Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Naked Mole Rats May Hold Clues to Successful Aging

06.03.2009
Naked mole rats resemble pink, wrinkly, saber-toothed sausages and would never win a beauty contest, even among other rodents. But these natives of East Africa are the champs for longevity among rodents, living nine times longer than similar-sized mice. Not only do they have an extraordinarily long lifespan, but they maintain good health for most of it and show remarkable resistance to cancer.

Researchers at The University of Texas Health Science Center at San Antonio are studying mechanisms that enable the prolonged good health and slowed aging of naked mole rats in their large colony at the university’s Barshop Institute for Longevity and Aging Studies. In the March 3 print edition of Proceedings of the National Academy of Sciences, the scientists report on another unusual feature of the animals — tissues of the naked mole rat are remarkably efficient at discarding damaged proteins and thereby maintaining stable, high-quality proteins.

“Naked mole rats don’t show the usual deterioration of aging, such as menopause or decline in brain function,” said paper co-author Rochelle Buffenstein, Ph.D., professor of physiology at the Barshop Institute and one of the world’s leading experts on aging in naked mole rats. “They demonstrate a healthy longevity that all of us would like to emulate.”

In most organisms, proteins are tagged for destruction, and a garbage disposer, called the “proteasome,” picks up the damaged ones and recycles their amino acids for new protein formation. The research team found very low levels of tagged proteins for destruction in naked mole rats, indicating they have better-quality protein as well as more efficient removal of damaged proteins. The result is the damaged ones do not accumulate and cause havoc in cells. “We now believe the level of protein damage in the naked mole rats is not as critical as their ability to dispose of the insults efficiently,” said the paper’s senior author, Asish Chaudhuri, Ph.D., assistant professor of biochemistry at the Barshop Institute.

The scientists compared naked mole rat tissues to those of laboratory mice. The specimens from naked mole rats were far superior at handling stress-induced damaged proteins.

“It’s been suggested that damaged proteins clump into globs that are toxic to cells, and these globs are believed to be very important in age-related neurodegenerative diseases such as Alzheimer’s, Parkinson’s, Huntington’s and Lou Gehrig’s diseases,” said the lead author, Viviana Perez, Ph.D., postdoctoral fellow at the Barshop Institute. “Finding a way to emulate the naked mole rats’ ability to effectively dispense of damaged proteins might lead to drugs to treat these diseases one day.”

The researchers’ next step is to determine whether tissues of other animals that are long-lived, such as certain birds, also possess a similar ability to efficiently dispose of damaged proteins. Eventually, tissues from primates and even humans could be studied to test the universality of “this protein-disposing theory,” Dr. Chaudhuri said.

“Understanding how naked mole rats better control protein quality may yield important insights for how we as humans can sustain good health,” Dr. Buffenstein said. “We might also learn something about treating age-associated degenerative diseases. The naked mole rats clearly hold the clues to successful aging.”

More information about the paper:

* Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole rat; Proceedings of the National Academy of Sciences, March 3, 2009; Viviana Perez1,4, Rochelle Buffenstein1,2,4,7, Venkata Masamsetti4, Shanique Leonard4, Adam Salmon4, James Mele2,4, Blazej Andziak7, Ting Yang7, Yael Edrey7, Bertrand Friguet3, Walter Ward2,4, Arlan Richardson1,4,5 and Asish Chaudhuri4,5,6

Departments of Cellular & Structural Biology1, Biochemistry6 and Physiology2, Barshop Institute for Longevity and Aging Studies4, The University of Texas Health Science Center at San Antonio; Geriatric Research, Education & Clinical Center5, South Texas Veterans Health Care System, San Antonio; Laboratoire de Biologie et Biochimie Cellulaire du Vieillissement3, University of Paris; and Department of Biology7, Graduate School of the City University of New York.

About the Health Science Center:

The University of Texas Health Science Center at San Antonio is the leading research institution in South Texas and one of the major health sciences universities in the world. With an operating budget of $668 million, the Health Science Center is the chief catalyst for the $16.3 billion biosciences and health care sector in San Antonio’s economy. The Health Science Center has had an estimated $36 billion impact on the region since inception and has expanded to six campuses in San Antonio, Laredo, Harlingen and Edinburg. More than 25,600 graduates (physicians, dentists, nurses, scientists and other health professionals) serve in their fields, including many in Texas. Health Science Center faculty are international leaders in cancer, cardiovascular disease, diabetes, aging, stroke prevention, kidney disease, orthopaedics, research imaging, transplant surgery, psychiatry and clinical neurosciences, pain management, genetics, nursing, dentistry and many other fields.

Will Sansom | Newswise Science News
Further information:
http://www.uthscsa.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>