Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Naked Mole Rats May Hold Clues to Successful Aging

06.03.2009
Naked mole rats resemble pink, wrinkly, saber-toothed sausages and would never win a beauty contest, even among other rodents. But these natives of East Africa are the champs for longevity among rodents, living nine times longer than similar-sized mice. Not only do they have an extraordinarily long lifespan, but they maintain good health for most of it and show remarkable resistance to cancer.

Researchers at The University of Texas Health Science Center at San Antonio are studying mechanisms that enable the prolonged good health and slowed aging of naked mole rats in their large colony at the university’s Barshop Institute for Longevity and Aging Studies. In the March 3 print edition of Proceedings of the National Academy of Sciences, the scientists report on another unusual feature of the animals — tissues of the naked mole rat are remarkably efficient at discarding damaged proteins and thereby maintaining stable, high-quality proteins.

“Naked mole rats don’t show the usual deterioration of aging, such as menopause or decline in brain function,” said paper co-author Rochelle Buffenstein, Ph.D., professor of physiology at the Barshop Institute and one of the world’s leading experts on aging in naked mole rats. “They demonstrate a healthy longevity that all of us would like to emulate.”

In most organisms, proteins are tagged for destruction, and a garbage disposer, called the “proteasome,” picks up the damaged ones and recycles their amino acids for new protein formation. The research team found very low levels of tagged proteins for destruction in naked mole rats, indicating they have better-quality protein as well as more efficient removal of damaged proteins. The result is the damaged ones do not accumulate and cause havoc in cells. “We now believe the level of protein damage in the naked mole rats is not as critical as their ability to dispose of the insults efficiently,” said the paper’s senior author, Asish Chaudhuri, Ph.D., assistant professor of biochemistry at the Barshop Institute.

The scientists compared naked mole rat tissues to those of laboratory mice. The specimens from naked mole rats were far superior at handling stress-induced damaged proteins.

“It’s been suggested that damaged proteins clump into globs that are toxic to cells, and these globs are believed to be very important in age-related neurodegenerative diseases such as Alzheimer’s, Parkinson’s, Huntington’s and Lou Gehrig’s diseases,” said the lead author, Viviana Perez, Ph.D., postdoctoral fellow at the Barshop Institute. “Finding a way to emulate the naked mole rats’ ability to effectively dispense of damaged proteins might lead to drugs to treat these diseases one day.”

The researchers’ next step is to determine whether tissues of other animals that are long-lived, such as certain birds, also possess a similar ability to efficiently dispose of damaged proteins. Eventually, tissues from primates and even humans could be studied to test the universality of “this protein-disposing theory,” Dr. Chaudhuri said.

“Understanding how naked mole rats better control protein quality may yield important insights for how we as humans can sustain good health,” Dr. Buffenstein said. “We might also learn something about treating age-associated degenerative diseases. The naked mole rats clearly hold the clues to successful aging.”

More information about the paper:

* Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole rat; Proceedings of the National Academy of Sciences, March 3, 2009; Viviana Perez1,4, Rochelle Buffenstein1,2,4,7, Venkata Masamsetti4, Shanique Leonard4, Adam Salmon4, James Mele2,4, Blazej Andziak7, Ting Yang7, Yael Edrey7, Bertrand Friguet3, Walter Ward2,4, Arlan Richardson1,4,5 and Asish Chaudhuri4,5,6

Departments of Cellular & Structural Biology1, Biochemistry6 and Physiology2, Barshop Institute for Longevity and Aging Studies4, The University of Texas Health Science Center at San Antonio; Geriatric Research, Education & Clinical Center5, South Texas Veterans Health Care System, San Antonio; Laboratoire de Biologie et Biochimie Cellulaire du Vieillissement3, University of Paris; and Department of Biology7, Graduate School of the City University of New York.

About the Health Science Center:

The University of Texas Health Science Center at San Antonio is the leading research institution in South Texas and one of the major health sciences universities in the world. With an operating budget of $668 million, the Health Science Center is the chief catalyst for the $16.3 billion biosciences and health care sector in San Antonio’s economy. The Health Science Center has had an estimated $36 billion impact on the region since inception and has expanded to six campuses in San Antonio, Laredo, Harlingen and Edinburg. More than 25,600 graduates (physicians, dentists, nurses, scientists and other health professionals) serve in their fields, including many in Texas. Health Science Center faculty are international leaders in cancer, cardiovascular disease, diabetes, aging, stroke prevention, kidney disease, orthopaedics, research imaging, transplant surgery, psychiatry and clinical neurosciences, pain management, genetics, nursing, dentistry and many other fields.

Will Sansom | Newswise Science News
Further information:
http://www.uthscsa.edu

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>