Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Naked mole-rats may hold clues to pain relief

24.09.2012
Naked mole-rats evolved to thrive in an acidic environment that other mammals, including humans, would find intolerable. Researchers at the University of Illinois at Chicago report new findings as to how these rodents have adapted to this environment.

The study was published online this week on PLOS ONE.

In the tightly crowded burrows of the African naked mole-rats' world, carbon dioxide builds up to levels that would be toxic for other mammals, and the air becomes highly acidic. These animals freely tolerate these unpleasant conditions, says Thomas Park, professor of biological sciences at UIC and principal investigator of the study -- which may offer clues to relieving pain in other animals and humans.

Much of the lingering pain of an injury, for example, is caused by acidification of the injured tissue, Park said.

"Acidification is an unavoidable side-effect of injury," he said. "Studying an animal that feels no pain from an acidified environment should lead to new ways of alleviating pain in humans."

In the nose of a mammal, specialized nerve fibers are activated by acidic fumes, stimulating the trigeminal nucleus, a collection of nerves in the brainstem, which in turn elicits physiological and behavioral responses that protect the animal -- it will secrete mucus and rub its nose, for example, and withdraw or avoid the acidic fumes.

The researchers placed naked mole-rats in a system of cages in which some areas contained air with acidic fumes. The animals were allowed to roam freely, and the time they spent in each area was tracked. Their behavior was compared to laboratory rats, mice, and a closely related mole-rat species that likes to live in comfy conditions, as experimental controls.

The naked mole-rats spent as much time exposing themselves to acidic fumes as they spent in fume-free areas, Park said. Each control species avoided the fumes.

The researchers were able to quantify the physiologic response to exposure to acidic fumes by measuring a protein, c-Fos, an indirect marker of nerve activity that is often expressed when nerve cells fire. In naked mole-rats, no such activity was found in the trigeminal nucleus when stimulated. In rats and mice, however, the trigeminal nucleus was highly activated.

The naked mole-rats' tolerance of acidic fumes is consistent with their adaptation to living underground in chronically acidic conditions, Park said.

The study was supported by a grant from the National Science Foundation. Pamela LaVinka, graduate student in biological sciences at UIC, was first author on the study.

[Video link: http://youtu.be/jHm0jmg-sbc]

[Photos for download: http://newsphoto.lib.uic.edu/v/naked+mole-rats/]

Jeanne Galatzer-Levy | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>