Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Naked mole-rats bear lifesaving clues

24.02.2012
Could blind, buck-toothed, finger-sized naked mole-rats harbor in their brain cells a survival secret that might lead to better heart attack or stroke treatments?

University of Illinois at Chicago biologist Thomas Park and colleagues at UIC and the University of Texas Heath Science Center at San Antonio think the subterranean lifestyle of the pasty-looking rodents may indeed hold clues to keeping brain cells alive and functioning when oxygen is scarce. The key may lie in how brain cells regulate their intake of calcium.

"Normally, calcium in brain cells does wonderful things, including forming memories," says Park, who is professor of biological sciences at UIC. "But too much calcium makes things go haywire."

Brain cells starved of oxygen can't regulate calcium entry, and too much calcium in the cell is lethal. When a heart attack or stroke prevents oxygenated blood from reaching the brain, brain damage or death results.

Naked mole-rats, however, are very tolerant to oxygen deprivation, or hypoxia -- as are human newborns, whose brain cells have calcium channels that close during oxygen deprivation, protecting the cells from calcium overdose. With age, these calcium channels no longer close, which normally isn't a problem -- except during a heart attack.

Naked mole-rats retain a tolerance for oxygen deprivation into adulthood. Park and his colleagues measured calcium entry in brain tissue that had been kept under oxygen-poor conditions, reporting their findings online Feb. 21 in PLoS One.

"We knew the adults of this unusual mammal had brains that, like infant humans, were very tolerant to oxygen deprivation," he said. "We wanted to know if the adult naked mole-rats used the same strategy as babies to prevent calcium entry. This is exactly what we found."

Park thinks this strategy is an evolutionary adaptation by mole-rats, which live in the hundreds underground in tight, oxygen-deprived conditions.

"Imagine 200 mice living in a shoe box buried four feet under the ground -- things are going to get bad fast," he said.

The researchers think they have identified a novel mechanism for protecting the adult brain in times of oxygen deprivation.

"Developing this target into a clinical application is our next goal," he said. "We need to find a way to rapidly up-regulate the infant-type of calcium channels. Adult humans actually have some of these channels already, but far fewer than infants."

Park, who for years has studied naked mole-rats and their unusual adaptations, thinks the latest findings "are just the tip of the iceberg" of what we can learn from the rodents. Their homes are not only oxygen-poor, but rich in carbon dioxide and ammonia -- conditions that would make most animals ill. Yet mole-rats have evolved to suppress pain and even cancer.

"The more we study these creatures," said Park, "the more we learn."

Co-authors include Rochelle Buffenstein, of the University of Texas Health Science Center in San Antonio; Bethany Peterson, a UIC doctoral student in Park's lab; John Larson, UIC associate professor of psychiatry; and Christopher Fall, UIC visiting research associate professor of bioengineering.

The study was funded by the National Science Foundation and the National Institutes of Health-National Institute of Mental Health Neurotechnology Program.

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>