Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Naked mole-rats bear lifesaving clues

24.02.2012
Could blind, buck-toothed, finger-sized naked mole-rats harbor in their brain cells a survival secret that might lead to better heart attack or stroke treatments?

University of Illinois at Chicago biologist Thomas Park and colleagues at UIC and the University of Texas Heath Science Center at San Antonio think the subterranean lifestyle of the pasty-looking rodents may indeed hold clues to keeping brain cells alive and functioning when oxygen is scarce. The key may lie in how brain cells regulate their intake of calcium.

"Normally, calcium in brain cells does wonderful things, including forming memories," says Park, who is professor of biological sciences at UIC. "But too much calcium makes things go haywire."

Brain cells starved of oxygen can't regulate calcium entry, and too much calcium in the cell is lethal. When a heart attack or stroke prevents oxygenated blood from reaching the brain, brain damage or death results.

Naked mole-rats, however, are very tolerant to oxygen deprivation, or hypoxia -- as are human newborns, whose brain cells have calcium channels that close during oxygen deprivation, protecting the cells from calcium overdose. With age, these calcium channels no longer close, which normally isn't a problem -- except during a heart attack.

Naked mole-rats retain a tolerance for oxygen deprivation into adulthood. Park and his colleagues measured calcium entry in brain tissue that had been kept under oxygen-poor conditions, reporting their findings online Feb. 21 in PLoS One.

"We knew the adults of this unusual mammal had brains that, like infant humans, were very tolerant to oxygen deprivation," he said. "We wanted to know if the adult naked mole-rats used the same strategy as babies to prevent calcium entry. This is exactly what we found."

Park thinks this strategy is an evolutionary adaptation by mole-rats, which live in the hundreds underground in tight, oxygen-deprived conditions.

"Imagine 200 mice living in a shoe box buried four feet under the ground -- things are going to get bad fast," he said.

The researchers think they have identified a novel mechanism for protecting the adult brain in times of oxygen deprivation.

"Developing this target into a clinical application is our next goal," he said. "We need to find a way to rapidly up-regulate the infant-type of calcium channels. Adult humans actually have some of these channels already, but far fewer than infants."

Park, who for years has studied naked mole-rats and their unusual adaptations, thinks the latest findings "are just the tip of the iceberg" of what we can learn from the rodents. Their homes are not only oxygen-poor, but rich in carbon dioxide and ammonia -- conditions that would make most animals ill. Yet mole-rats have evolved to suppress pain and even cancer.

"The more we study these creatures," said Park, "the more we learn."

Co-authors include Rochelle Buffenstein, of the University of Texas Health Science Center in San Antonio; Bethany Peterson, a UIC doctoral student in Park's lab; John Larson, UIC associate professor of psychiatry; and Christopher Fall, UIC visiting research associate professor of bioengineering.

The study was funded by the National Science Foundation and the National Institutes of Health-National Institute of Mental Health Neurotechnology Program.

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>