Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The Naked Mole-Rat’s Secret to Staying Cancer Free

A team of researchers from the University of Rochester (NY) and the University of Haifa discovered the naked mole rat’s unique mechanism to staying cancer free- a super sugar called high-molecular-mass Hyaluronan (HMM-HA). When secreted by the naked mole rat’s cells, this molecule prevents cells from overcrowding and forming tumors. Researchers now say using naked mole-rat HMM-HA in the clinic could open up new avenues for cancer prevention and life extension in humans.

Mice and rats have long since been a standard animal model for cancer research, mainly due to their short lifespan of four years on average and high incidence of cancer. Naked mole rats however, are a mystery among mammals.

This social tiny African subterranean rodent has a maximum lifespan exceeding 30 years and most surprisingly, is cancer-resistant. The fact that so far, not a single incident of cancer has been detected makes the naked mole rat a fitting model for finding novel ways to fight cancer.

Recently, a team of researchers from the University of Rochester in New York and the University of Haifa found the naked mole rat’s unique mechanism to staying cancer free- a super sugar called high-molecular-mass Hyaluronan (HMM-HA). They discovered that when secreted from the naked mole rat’s cells, HMM-HA prevents cells from overcrowding and forming tumors.

“Contact inhibition, a powerful anticancer mechanism, discovered by the Rochester team, arresting cell growth when cells come into contact with each other, is lost in cancer cells”, explains Prof. Eviatar Nevo, from the Institute of Evolution at the University of Haifa, “The experiments showed that when HMM-HA was removed from naked mole rat cells, they became susceptible to tumors and lost their contact inhibition”.

HMM-HA is a form of Hyaluronan- a long sugar polymer, naturally present as a lubricant in the extracellular matrix of the human body. It is commonly used in the treatment of arthritis or in anti-wrinkle skin care products. According to the current results, the naked mole rat cells secrete extremely high-molecular mass HA, which is over five times larger than human or mouse HA. This high-molecular-mass HA accumulates abundantly in naked mole rat tissues, owing to a more robust synthesis by a protein called HAS2 and a decreased activity of HA-degrading enzymes.

When researchers compared the Has2 gene between the naked mole rat and other mammals, they discovered that two unique amino acids, (asparagines), that are 100% conserved among mammals, were replaced by two other amino acids (serines), in the naked mole rat. These unique amino acid changes may be responsible for the high processivity of the naked mole rat HAS2 protein- in charge of HA synthesis. The naked mole rat cells display a two-fold higher affinity to HA than mouse or human cells, contributing to the higher sensitivity of naked mole rat cells to HA signaling. Remarkably, explains Professor Nevo, "the cells of the Israeli solitary blind mole rat, Spalax, which is phylogenetically closer to mice and rats than to naked mole rats, also secreted HMM-HA. This highlights a parallel evolution in unrelated subterranean mammals, presumably a shared adaptation to life underground".

The researchers speculate that naked mole rats evolved higher concentrations of HA in the skin to provide the skin elasticity needed for life in underground tunnels. So far, experiments in human cells have been very limited. However, there has been some evidence showing there is reason for hope. In one of their experiments, the researchers noticed that when naked mole rat HAS2 synthesis protein was overexpressed in human cell tissues, the cells began secreting HMM-HA. This opens new avenues for cancer prevention and life extension in human medicine.

For more information:
Polina Petruhin
Office: +972-4-8288722
Mobile: +972-54-3933092
Communications and Media Relations
University of Haifa

Polina Petruhin | University of Haifa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>