Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The mystery of the brain continues to be unraveled

07.09.2009
Researchers at the University of Haifa have identified one of the necessary processes in the formation of long-term memory

*Researchers discover that the addition of the phosphor molecule to a the NMDA receptor in the brain is a necessary step to memory formation*

A new study that was carried out at the University of Haifa has identified another component in the chain of actions that take place in the neurons in the process of forming memories. This discovery joins a line of findings from previous studies that together provide a better understanding of the most complex processes in nature – the process of memory formation and storage in the human brain. The new study has been published in the prestigious Journal of Neuroscience.

The human brain is continuously inundated with sensory information on the world: new sounds, tastes, sights and smells and the formation of memory to these inputs is ultimately vital for animal survival. Very little of this information becomes short-term memory. And only a small part of the information that becomes short-term memory ultimately becomes long-term and stabilized memory. Earlier studies that were carried out at the Molecular Mechanisms of Learning and Memory laboratory headed by Prof. Kobi Rosenblum at the University of Haifa found that the an elevation in the expression of the protein PSD-95 is necessary for the formation of long-term memory. The present study aimed to find out whether another molecular process – the addition of a phosphor molecule to the NMDA receptor protein (phosphorylation) – is necessary too.

Earlier studies have proven that changes in the NMDA receptor can adjust the neuronal network in the brain, and that during a learning process this receptor undergoes increased phosphorylation. Until now, it had not been proved that the increase in phosphorylation of the NMDA is necessary for the process and that the process would not occur without it.

In order to prove this, the scientists - headed by Prof. Rosenblum, Head of the Department of Neurobiology and Ethology at the University of Haifa, and Dr. Liza Barki-Harrington, along with Dr. Alina Elkobi and research student Tali Tzabary - chose to focus on the formation of new taste memory in rats as a model for sensory memory. According to the researchers, examining taste-learning processes has advantages in this type of research, since it enables tracking when the process begins, what its specific location is in the brain and the molecular processes that occur during the process.

The first stage of the study aimed to verify the findings of the previous studies and showed that the new taste learning does indeed involve a process of increased phosphorylation in the NMDA receptors in the area specific to learning taste in the brain. In order to do so, mature rats were trained to drink water at set times and after a few days some were given saccharine-sweetened water. The saccharine has no caloric value and therefore has no metabolic impact on the body and cannot affect the body's processes. As expected, the rats that received the newly sweet-tasting water and that began a process of learning, showed an increase in phosphorylation in comparison to those rats that continued drinking regular water.

The second stage of the study was aimed at showing that the phosphorylation process is essential. For this, the scientists injected a new group of rats with a substance that inhibits phosphorylation of the NMDA in the area of taste learning in the brain when drinking the saccharine. Tests that were carried out afterwards showed that these rats were not able to learn the new taste, which proves that the phosphorylation process is necessary for learning taste. The researchers found that obstruction of the process brings about a change in the location of the receptor in relation to the NMDA and thereby is likely to be responsible for inhibiting the formation of long-term memory.

"Our goal is to identify piece after piece of the complex puzzle that is the formation of long-term memory. Once we know how to describe the chain of actions that take place in the brain, we may be able to know where and how to interfere," Dr. Barki-Harrington said.

"The glutamate neural synapses – via the receptors of the NMDA – and dophamin, play a central role in a number of neural pathologies, including processes of addiction and of schizophrenia. There is good reason to assume that one afflicted with schizophrenia has a sub- or over-functioning of this system, and its loss of balance is one of the causes of the illness. A better understanding of this balance - or loss of balance - in the normal processes will enable future discovery of new objectives for developing medications, which we hope will improve patients' lives significantly," Prof. Rosenblum stated.

Amir Gilat, Ph.D.

Communication and Media Relations
University of Haifa
Tel: +972-4-8240092/4
Cell: +972-52-6178200
press@univ.haifa.ac.il

Amir Gilat | University of Haifa
Further information:
http://www.haifa.ac.il

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>