Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mysterious horse is a donkey / Skeletal remains in Pompeii: scientists clear up misapprehension

16.11.2010
Scientists have been faced with a mystery ever since the remains of an apparently unknown breed of horse were discovered in Pompeii. Now, however, scientists from Cambridge and Münster have solved the puzzle. The horse is, in fact, a donkey.

After DNA tests on a skeleton found among the remains of an antique Roman house in 2004, Italian scientists assumed they had discovered a breed of horse which had been hitherto unknown or had died out.

An error occurred during these tests, is what a team of scientists from Cambridge University and the Institute of Forensic Genetics at Münster University now say. Their arguments have been published in a letter to the editor of the online edition of the Journal of Cellular Biochemistry. Evidently, donkey DNA became combined with horse DNA, producing an artificial hybrid DNA.

In the original study, analyses were made of five skeletons from equids, to which horses, donkeys and zebras belong. The skeletons had been excavated from the remains of a household in the antique city of Pompeii, in the stables of the Casa dei Casti Amanti (House of the Chaste Lovers). This well-known building is named after the wall frescoes depicting romantic scenes. The owner was probably Caius Iulius Polybius, a wealthy politician and baker. Archaeologists derive this latter occupation from the fact that an open baking oven and four millstones were found in the house. The horse skeletons had been conserved by means of a layer of volcanic ash which had buried Pompeii and the nearby settlement Herculaneum when Vesuvius erupted in 79 AD.

The team of researchers that carried out the original study examined the 2000-year-old mitochondrial DNA of the horses, i.e. DNA not from the cell nucleus but from the “energy powerhouses” (the mitochondria) of the cells. Four DNA types could be easily classified as they matched typical mitochondrial genetic material found in horses. The fifth horse, however, seemed to possess DNA similar to that of horses but otherwise unknown. The scientists came to the conclusion that the horse in question was of a breed hitherto unknown and presumably extinct.

Susan Gurney, a PhD student at Münster University’s Institute of Animal Physiology and a member of the Institute of Forensic Genetics at the University of Cambridge in the UK, took a closer look at the data. Gurney, an expert on the evolution of horses, concluded that an error had occurred in the initial tests. The mitochondrial DNA of a horse had evidently come into contact with that of a donkey, resulting in the formation of hybrid DNA which appeared to originate from an unknown breed of horse. Gurney demonstrated that the first 177 structural units (or nucleotides) of the DNA sequence matched the sequence of nucleotides for donkeys’ genetic material. The remaining 193 nucleotides match horse DNA. “It was easy to recognize that originally there must have been two separate DNA strands,” she says. The error might have occurred during the excavation work – perhaps DNA was transferred from one skeleton to another. Or possibly the error occurred inadvertently in the lab or afterwards during the data analysis at the computer.”

Although the scientists have not been able to confirm that a new breed of horse has been discovered, the result is still exciting, they say. If the donkey DNA really did come from the antique skeleton, this would demonstrate for the first time that the archetype of the domestic donkey typically found in Italy today was already being kept in ancient Pompeii. This lineage is descended from the Somali wild ass. In other European countries, by contrast, the donkeys kept are descended from the Nubian lineage. The ancient donkey DNA provides researchers with new insights into the history of donkey breeding.

The study involved not only Susan Gurney from Cambridge University, currently writing her PhD at the Institute of Animal Physiology headed by Prof. Wolf-Michael Weber, but also Dr. Peter Forster. Forster is a scientist at Münster’s Institute of Forensic Genetics, headed by Prof. Emeritus Bernd Brinkmann.

References:

Susan M. R. Gurney (2010): Revisiting ancient mtDNA equid sequences from Pompeii. Journal of Cellular Biochemistry (Accepted manuscript online); DOI: 10.1002/jcb.22914

Dr. Christina Heimken | idw
Further information:
http://www.uni-muenster.de/

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>