Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mysterious catalyst explained: how tiny gold particles aid the production of plastic components

30.04.2013
RUB researchers report in “Angewandte Chemie”

From methanol to formaldehyde - this reaction is the starting point for the synthesis of many everyday plastics. Using catalysts made of gold particles, formaldehyde could be produced without the environmentally hazardous waste generated in conventional methods.


Gold/titanium dioxide catalyst in action: At the interface between a gold particle (Au, gold) and the titanium dioxide surface (TiO2, red and light blue), an oxygen molecule (O2, dark blue spheres) is activated by a charge transfer and becomes catalytically active. Thus, methanol (CH3OH) can be efficiently and selectively oxidized to formaldehyde (CH2O); water (H2O) is produced as well. The researchers made the charge transfer visible using vibrational spectroscopy of adsorbed carbon monoxide (CO; middle of the figure): In the presence of oxygen, a new band (CO@Au(delta+)O2(delta-) appears in the spectrum.
Image: M. Farnesi Camellone, D. Marx

Just how the mysterious gold catalyst works has been found out by theoretical and experimental researchers at the Ruhr-Universität Bochum in a cooperation project. In the international edition of the journal “Angewandte Chemie” they report in detail on what happens on the gold surface during the chemical reaction.

“Gold should not really be suitable as a catalyst.”

“That nanoparticles of gold actually selectively transform methanol into formaldehyde is remarkable”, says Prof. Dr. Martin Muhler of the Laboratory of Industrial Chemistry at the RUB. “As a stable precious metal, gold should not really be suitable as a catalyst.” However, gold particles of a few nanometres in size, anchored to a titanium dioxide surface, fulfil their purpose. You only need oxygen to set the reaction in motion, and the only waste product is water. How this is achieved is examined by Muhler’s team together with the groups of Prof. Dr. Dominik Marx of the Chair of Theoretical Chemistry and Dr. Yuemin Wang of the Department of Physical Chemistry I.

Oxygen binds at the interface between gold and titanium dioxide

The chemists identified the active site of the catalyst, i.e. the point at which the oxygen and methanol bind and are converted to water and formaldehyde. Elaborate calculations by Dr. Matteo Farnesi Camellone showed that oxygen binds at the interface between titanium dioxide and gold particles. Since titanium dioxide is a semiconductor, and thus electrically conductive, a charge exchange between oxygen, gold particles and titanium dioxide is possible here. Oxygen vacancies in the titanium dioxide further favour this charge transfer. Electrons transitionally transfer from the catalyst to the oxygen molecule. This allows the methanol to bind to the gold particles. In several further reaction steps, formaldehyde and water form. The solid, which consists of gold and titanium dioxide, is in the same state at the end of the reaction cycle as at the beginning, and is thus not consumed.

Experiment and theory: only the combination makes it possible

The RUB team clarified the individual reaction steps in detail. The researchers used computer simulations, so-called density functional calculations, and various spectroscopic techniques, namely, vibrational spectroscopy (HREELS method) and thermal desorption spectroscopy. In his model calculations, Dr. Farnesi quantified the charge exchange taking place during catalysis. Extremely sensitive vibrational spectroscopic measurements by Dr. Wang’s group confirmed the consequences of the charge transfer in the real system. “Through an intensive cooperation between theory and experiment, we have been able to qualitatively and quantitatively explore the active site and the entire reaction mechanism of this complex catalyst”, stresses Prof. Marx.

Funding

The study originates from the Collaborative Research Centre 558 “Metal-substrate interactions in heterogeneous catalysis”, which ended mid-2012. “The results are, so to speak, the crowning glory of the SFB works on alcohol oxidation”, Muhler sums up. The project was further actively funded by the Cluster of Excellence “Ruhr Explores Solvation” RESOLV (EXC 1069), approved by the German Research Foundation (DFG) in 2012, in which researchers investigate the selective oxidation of alcohols in the liquid phase.

Bibliographic record

M. Farnesi Camellone, J. Zhao, L. Jin, Y. Wang, M. Muhler, D. Marx (2013): Molecular understanding of reactivity and selectivity for methanol oxidation at the Au/TiO2 interface, Angewandte Chemie International Edition, DOI: 10.1002/anie.201301868

Further information

Prof. Dr. Martin Muhler, Laboratory of Industrial Chemistry, Faculty of Chemistry and Biochemistry at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-28754, E-mail: muhler@techem.rub.de

Prof. Dr. Dominik Marx, Chair of Theoretical Chemistry, Faculty of Chemistry and Biochemistry at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-28083, E-mail: dominik.marx@theochem.rub.de

Further press releases on this topic
http://aktuell.ruhr-uni-bochum.de/pm2013/pm00053.html.en

Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://aktuell.ruhr-uni-bochum.de/pm2013/pm00053.html.en

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>