Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Myelodysplastic syndromes (MDS) linked to abnormal stem cells

Findings could yield therapies against these serious blood diseases and related cancers

Researchers at Albert Einstein College of Medicine of Yeshiva University have found that abnormal bone marrow stem cells drive the development of myelodysplastic syndromes (MDS), serious blood diseases that are common among the elderly and that can progress to acute leukemia. The findings could lead to targeted therapies against MDS and prevent MDS-related cancers. The study is published today in the online edition of the journal Blood.

"Researchers have suspected that MDS is a 'stem cell disease,' and now we finally have proof," said co-senior author Amit Verma, M.B.B.S., associate professor of medicine and of developmental and molecular biology at Einstein and attending physician in oncology at Montefiore Einstein Center for Cancer Care. "Equally important, we found that even after MDS standard treatment, abnormal stem cells persist in the bone marrow. So, although the patient may be in remission, those stem cells don't die and the disease will inevitably return. Based on our findings, it's clear that we need to wipe out the abnormal stem cells in order to improve cure rates."

MDS are a diverse group of incurable diseases that affect the bone marrow and lead to low numbers of blood cells. While some forms of MDS are mild and easily managed, some 25 to 30 percent of cases develop into an aggressive disease called acute myeloid leukemia. Each year, about 10,000 to 15,000 people in the U.S. are diagnosed with MDS, according to the National Marrow Donor Program.

Most cases of MDS occur in people over age 60, but the disease can affect people of any age and is more common in men than women. Symptoms vary widely, ranging from anemia to infections, fever and bleeding. Treatment usually involves chemotherapy to destroy abnormal blood cells plus supportive care such as blood transfusions.

In the current study, lead author Britta Will, Ph.D., research associate in the department of cell biology, and her colleagues analyzed bone marrow stem cells and progenitor cells (i.e., cells formed by stem cells) from 16 patients with various types of MDS and 17 healthy controls. The stem and progenitor cells were isolated from bone marrow using novel cell-sorting methods developed in the laboratory of co-senior author Ulrich Steidl, M.D., Ph.D., assistant professor of cell biology and of medicine and the Diane and Arthur B. Belfer Faculty Scholar in Cancer Research at Einstein.

Genome-wide analysis revealed widespread genetic and epigenetic alterations in stem and progenitor cells taken from MDS patients, in comparison to cells taken from healthy controls. The abnormalities were more pronounced in patients with types of MDS likely to prove fatal than in patients with lower-risk types.

"Our study offers new hope that MDS can be more effectively treated, with therapies that specifically target genes that are deregulated in early stem and progenitor cells," said Dr. Steidl. "In addition, our findings could help to detect minimal residual disease in patients in remission, allowing for more individualized treatment strategies that permanently eradicate the disease."

The paper is titled, "Stem and progenitor cells in myelodysplastic syndromes show aberrant stage specific expansion and harbor genetic and epigenetic alterations." Other Einstein contributors include: Li Zhou, Ph.D., Thomas O. Vogler, B.Sc., Carolina Schinke, M.D., Roni Tamari, M.D., Yiting Yu, Ph.D., Tushar Bhagat, M.S., Sanchari Bhattacharyya, Ph.D., Laura Barreyro, M.S., Christoph Heuck, M.D., Yongkai Mo, Ph.D., Samir Parekh, M.D., Christine McMahon, M.D., Cristina Montagna, Ph.D., John Greally, M.B.B.Ch., Ph.D., and B. Hilda Ye, Ph.D. Other contributors include: Susana Ben-Neriah and Christian Steidl, M.D., at University of British Columbia, Vancouver, BC, Canada; Andrea Pellagatti, Ph.D., and Jacqueline Boultwood, Ph.D., at John Radcliffe Hospital, Oxford, UK; Lewis Silverman, M.D., at Mt. Sinai School of Medicine, New York, NY; Jaroslaw Maciejewski, M.D., Ph.D., at Cleveland Clinic, Cleveland, OH; and Alan F. List, M.D. at Moffitt Cancer Center, Tampa, FL.

The research was supported by grants from the National Heart, Lung, and Blood Institute (HL082946) and the National Cancer Institute (CA131503), both part of the National Institutes of Health.

Albert Einstein College of Medicine

Albert Einstein College of Medicine of Yeshiva University is one of the nation's premier centers for research, medical education and clinical investigation. In 2011, Einstein received nearly $170 million in awards from the NIH for major research centers at Einstein in diabetes, cancer, liver disease, and AIDS, as well as other areas. Through its affiliation with Montefiore Medical Center, the University Hospital for Einstein, and four other hospital systems, the College of Medicine runs one of the largest post-graduate medical training programs in the United States, offering 155 residency programs to more than 2,200 physicians in training. For more information, please visit and follow us on Twitter @EinsteinMed.

Montefiore Medical Center

As the University Hospital for Albert Einstein College of Medicine, Montefiore is a premier academic medical center nationally renowned for its clinical excellence, scientific discovery and commitment to its community. Montefiore is consistently recognized among the top hospitals nationally by U.S. News & World Report, and excels at educating tomorrow's healthcare professionals in superior clinical and humanistic care. Linked by advanced technology, Montefiore is a comprehensive and integrated health system that derives its inspiration for excellence from its patients and community. For more information, please visit and and follow us on Twitter @MontefioreNews.

Kim Newman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>