Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mycobacterium tuberculosis: Our African follower for over 70,000 years!

Tuberculosis (TB) remains one of deadliest infectious diseases of humans, killing 50% of individuals when left untreated. Even today, TB causes 1-2 million deaths every year mainly in developing countries. Multidrug-resistance is a growing threat in the fight against the disease.

An international group of researchers led by Sebastien Gagneux from the Swiss Tropical and Public Health Institute (Swiss TPH) has now identified the origin in time and space of the disease.

Using whole-genome sequencing of 259 Mycobacterium tuberculosis strains collected from different parts of the world, they determined the genetic pedigree of the deadly bugs. This genome comparison to be published September 1st in the journal Nature Genetics indicates that TB mycobacteria originated at least 70,000 years ago in Africa.

Stunningly close relationship between humans and M. tuberculosis

The researchers compared the genetic evolutionary trees of mycobacteria and humans side-by-side. And to the researcher's surprise, the phylogenetic trees of humans and the TB bacteria showed a very close match. "The evolutionary path of humans and the TB bacteria shows striking similarities," says Sebastien Gagneux.

This strongly points to a close relationship between the two, lasting tens of thousands of years. Humans and TB bacteria not only have emerged in the same region of the world, but have also migrated out of Africa together and expanded all over the globe.

The migratory behaviour of modern humans accompanied with changes in lifestyle has created favourable conditions for an increasingly deadly disease to evolve. "We see that the diversity of tuberculosis bacteria has increased markedly when human populations expanded," says evolutionary biologist Sebastien Gagneux.

Human expansion in the so called Neolithic Demographic Transition (NDT) period combined with new human lifestyles living in larger groups and in village-like structures may have created conditions for the efficient human-to-human transmission of the disease, Gagneux suggests. This may also have increased the virulence of the bacteria over time.

The results indicate further that TB is unlikely to have jumped from domesticated animals to humans, as seen for other infectious diseases. "Simply, because Mycobacteria tuberculosis emerged long before humans started to domesticate animals," says Swiss TPH's Sebastien Gagneux.

New strategies to defeat tuberculosis

Tuberculosis remains a global threat. New drugs and vaccines are urgently needed to fight this poverty-related disease. Multidrug-resistance against first-line treatments is a growing threat in many countries. Therefore, the exploration of the evolutionary patterns of TB bacteria may help predicting future patterns of the disease. This may contribute to future drug discovery and to the design of improved strategies for disease control.

Christian Heuss | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>