Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How mycobacteria avoid destruction inside human cells

10.09.2010
Newly published in PLoS Pathogens

Tuberculosis, or TB, is a dreaded contagious disease of the lungs and other organs. The causative agent, Mycobacterium tuberculosis (or M. tuberculosis), infects roughly a third of the world's population and one-in-ten to one-in-twenty of the infected population becomes sick or infectious at some point during their lifetime.

The mycobacteria survive, and even thrive, inside host macrophages – cells that are part of the human immune system and that usually engulf and destroy bacteria in structures called phagosomes. M. tuberculosis is taken into phagosomes but it somehow blocks phagosome maturation, and hence survives. Figuring out how could open up new therapeutic targets for the treatment of TB as well as shedding light on the mechanism of intracellular parasitism.

Researchers at the Pasteur Institutes in Seoul and Paris and Institute of Pharmacology and Structural Biology (IPBS) in Toulouse joined forces to systematically search for mycobacterial genes that block phagosome maturation. To do this, they generated 11,000 different mutants of the M. tuberculosis Beijing strain, which has been associated with large outbreaks of TB, increased virulence, and multidrug resistance.

Using a high-throughput visual assay, the researchers screened for mutant mycobacteria that had lost the ability to arrest phagosomal maturation. Lead author Dr. Priscille Brodin, heading the Inserm Avenir Unit at Institut Pasteur Korea describes the screen as "enabling stringent selection of mutants that have the most pronounced subcellular localization within intracellular acidic compartments through the use of automated confocal quantitative imaging. Our approach", she adds, "may be useful to identify virulence genes in other intracellular pathogens".

The team identified ten distinct mutants, only one of which had previously been shown to play a part in phagosome maturation arrest. Finding that two independent mutants mapped to the same region, they studied this locus in more detail. The work revealed that the biosynthesis of particular glycolipids containing acyltrehalose was perturbed, suggesting to the researchers that these glycolipids play a critical role in the early intracellular protection of mycobacteria.

"Our study unravels the role of novel lipid molecules in mycobacterial intracellular parasitism" says Dr. Olivier Neyrolles leading a CNRS Unit at IPBS in Toulouse France. "This establishes potential new drug targets", especially important given the emergence of multidrug-resistant and extensively drug-resistant TB. "In addition", Dr Brodin points out, "the assay that have we developed can be readily adapted for the screening of novel antimicrobials".

1. P. Brodin1, Y. Poquet et al., "High content phenotypic cell-based visual screen identifies Mycobacterium tuberculosis acyltrehalose-containing glycolipids involved in phagosome remodeling", PLoS Pathogens, finish reference…

Jean Kim | EurekAlert!
Further information:
http://www.ip-korea.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>