Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

My bonnie is over the ocean – Freshwater turtle crosses the Aegean Sea

07.04.2014

Scientists at the Senckenberg Research Institute in Dresden, together with an international team of researchers, have studied the widely distributed freshwater turtle, Mauremys rivulata. In spite of geographical barriers, the turtles are genetically very similar throughout their vast distribution range. This would indicate that that animals cross hundreds of kilometres of sea. The relevant study is published in the scientific journal “Zoologica Scripta”.

Mauremys rivulata is a turtle, no more than 24 centimetres in size, which is widely distributed in lakes and streams in the region of the Eastern Mediterranean, from southeast Europe and Greece to western Turkey and as far as Lebanon, Israel, Syria and the islands of Crete and Cyprus.


Mauremys rivulata – here in its natural habitat on the bank of a stream

© M. Vamberger


Result of the sea crossing: young Mauremys rivulata

© M. Vamberger

The wide range of the species led the research team of Prof Dr Uwe Fritz, Managing Director at Senckenberg Dresden to study this species of turtle genetically.

“Because of the many geographical barriers in the range of this freshwater turtle – especially the Aegean Sea – we assumed that there would be many genetically different populations. This was based on the consideration that there was no gene flow between the isolated distribution patches, as the sea divides the populations,” says Fritz.

The story that emerged, however, was quite a different one: Using different genetic methods, the scientists examined 340 turtle samples from a total of 63 localities across the entire region of distribution. “The astonishing thing is that even turtles living at great distances from each other display an almost identical genetic pattern, for instance, in southeast Europe and Asian Turkey” explains Fritz. This means that the turtles must have found a means to exchange their genes across large distances – and indeed over hundreds of kilometres of sea.

But how do the animals manage to live on both sides of the Aegean without developing into an individual species over time? “One idea is that the turtles were brought to the different regions by humans, which meant that the gene pool could mix constantly,” explains Melita Vamberger, lead author of the study, and adds: “Yet in contrast to other turtles, Mauremys rivulata was never popular as food, because these animals stink terribly. There is therefore no obvious reason why these turtles should have been transported in such large numbers.”

Thus, only one other – unexpected – possibility remained for the researchers: “We assume that this freshwater turtle is dispersed across the sea. It is likely that turtles are swept repeatedly from their habitats in coastal swamps into the sea by storms. They can obviously survive for a long time in the sea, long enough until they are washed onto some shoreline somewhere. And this occasional exchange is sufficient!”
In fact, some time ago a Mauremys rivulata was caught on open water near Cyprus, which would support this theory.

And whatever a turtle can do might also be a feasible option for others. “It might well be possible,” says Fritz, “that other turtle species take the route across the sea. For instance, this could also explain the weak genetic structure found throughout the widely distributed and endangered North American diamond terrapin (Malaclemys terrapin)”. This could necessitate rethinking conservation measures for this and other species.

Contact
Prof. Dr. Uwe Fritz
Senckenberg Naturhistorische
Sammlungen Dresden
Tel. +49- 351 - 795841 4326
Uwe.Fritz@senckenberg.de

Melita Vamberger
Senckenberg Naturhistorische
Sammlungen Dresden
Tel. +49- 351 795841 4328
melita.vamberger@senckenberg.de

Judith Jördens
Press Office
Senckenberg Gesellschaft für Naturforschung
Tel. +49- 69 7542 1434
pressestelle@senckenberg.de

Publication
Vamberger, M., Stuckas, H., Ayaz, D., Lymberakis, P., Široký, P. & Fritz, U. (2014). Massive transoceanic gene flow in a freshwater turtle (Testudines: Geoemydidae: Mauremys rivulata). – Zoologica Scripta. DOI: 10.1111/zsc.12055

Weitere Informationen:

http://www.senckenberg.de/presse

Judith Jördens | Senckenberg

Further reports about: Cyprus Mediterranean Senckenberg Turkey animals freshwater humans individual isolated large populations species turtles

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>