Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

My bonnie is over the ocean – Freshwater turtle crosses the Aegean Sea

07.04.2014

Scientists at the Senckenberg Research Institute in Dresden, together with an international team of researchers, have studied the widely distributed freshwater turtle, Mauremys rivulata. In spite of geographical barriers, the turtles are genetically very similar throughout their vast distribution range. This would indicate that that animals cross hundreds of kilometres of sea. The relevant study is published in the scientific journal “Zoologica Scripta”.

Mauremys rivulata is a turtle, no more than 24 centimetres in size, which is widely distributed in lakes and streams in the region of the Eastern Mediterranean, from southeast Europe and Greece to western Turkey and as far as Lebanon, Israel, Syria and the islands of Crete and Cyprus.


Mauremys rivulata – here in its natural habitat on the bank of a stream

© M. Vamberger


Result of the sea crossing: young Mauremys rivulata

© M. Vamberger

The wide range of the species led the research team of Prof Dr Uwe Fritz, Managing Director at Senckenberg Dresden to study this species of turtle genetically.

“Because of the many geographical barriers in the range of this freshwater turtle – especially the Aegean Sea – we assumed that there would be many genetically different populations. This was based on the consideration that there was no gene flow between the isolated distribution patches, as the sea divides the populations,” says Fritz.

The story that emerged, however, was quite a different one: Using different genetic methods, the scientists examined 340 turtle samples from a total of 63 localities across the entire region of distribution. “The astonishing thing is that even turtles living at great distances from each other display an almost identical genetic pattern, for instance, in southeast Europe and Asian Turkey” explains Fritz. This means that the turtles must have found a means to exchange their genes across large distances – and indeed over hundreds of kilometres of sea.

But how do the animals manage to live on both sides of the Aegean without developing into an individual species over time? “One idea is that the turtles were brought to the different regions by humans, which meant that the gene pool could mix constantly,” explains Melita Vamberger, lead author of the study, and adds: “Yet in contrast to other turtles, Mauremys rivulata was never popular as food, because these animals stink terribly. There is therefore no obvious reason why these turtles should have been transported in such large numbers.”

Thus, only one other – unexpected – possibility remained for the researchers: “We assume that this freshwater turtle is dispersed across the sea. It is likely that turtles are swept repeatedly from their habitats in coastal swamps into the sea by storms. They can obviously survive for a long time in the sea, long enough until they are washed onto some shoreline somewhere. And this occasional exchange is sufficient!”
In fact, some time ago a Mauremys rivulata was caught on open water near Cyprus, which would support this theory.

And whatever a turtle can do might also be a feasible option for others. “It might well be possible,” says Fritz, “that other turtle species take the route across the sea. For instance, this could also explain the weak genetic structure found throughout the widely distributed and endangered North American diamond terrapin (Malaclemys terrapin)”. This could necessitate rethinking conservation measures for this and other species.

Contact
Prof. Dr. Uwe Fritz
Senckenberg Naturhistorische
Sammlungen Dresden
Tel. +49- 351 - 795841 4326
Uwe.Fritz@senckenberg.de

Melita Vamberger
Senckenberg Naturhistorische
Sammlungen Dresden
Tel. +49- 351 795841 4328
melita.vamberger@senckenberg.de

Judith Jördens
Press Office
Senckenberg Gesellschaft für Naturforschung
Tel. +49- 69 7542 1434
pressestelle@senckenberg.de

Publication
Vamberger, M., Stuckas, H., Ayaz, D., Lymberakis, P., Široký, P. & Fritz, U. (2014). Massive transoceanic gene flow in a freshwater turtle (Testudines: Geoemydidae: Mauremys rivulata). – Zoologica Scripta. DOI: 10.1111/zsc.12055

Weitere Informationen:

http://www.senckenberg.de/presse

Judith Jördens | Senckenberg

Further reports about: Cyprus Mediterranean Senckenberg Turkey animals freshwater humans individual isolated large populations species turtles

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>