Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutations in gene linked to ciliopathies

11.08.2009
An international team of scientists, led by researchers at the University of California, San Diego School of Medicine, have discovered a connection between mutations in the INPP5E gene and ciliopathies. Their findings, which may lead to new therapies for these diseases, will appear in the online edition of Nature Genetics on August 9.

Ciliopathies are a newly emerging group of diseases caused by defects in the function or structure of cellular primary cilia, which are small, cellular appendages of previously unknown function. Examples of ciliopathies include mental retardation, retinal blindness, obesity, polycystic kidney disease, liver fibrosis, ataxia, and some forms of cancer.

Joseph G. Gleeson, MD, professor of neurosciences and pediatrics at UC San Diego and a Howard Hughes Medical Institute investigator, and his colleagues showed that when two copies of mutated INPP5E are present in an individual, the result is Joubert syndrome, a condition marked by mental retardation and impaired balance. They linked the function of the protein that is encoded by this gene to enzymatic conversion of one of the most important signaling molecules in the body, phosphatylinositol, currently one of the main targets of the pharmaceutical industry to treat a host of diseases, including cancer.

The Gleeson team, led by UC San Diego scientists Stephanie Bielas, PhD, and Jennifer Silhavey, MS, discovered that the enzyme goes to a cellular structure known as the cilium, a long-forgotten organelle without clear function until recently. However, in the past five years, the field of cilia biology has exploded due to the recognition that many of our basic bodily functions are regulated and "fine-tuned" by the cilium.

Because all of the genetic mutations led to an alteration in the enzyme activity, it suggests that the phosphatylinositol pathway could be modulated using drugs already in the pharmaceutical pipeline in order to target a host of cilia-related diseases, to re-establish the normal pathway function and improve the diverse symptoms of ciliopathies.

"Many patients show symptoms that worsen over time," said Gleeson. "It is possible that if effective treatments were available, they could stop or possibly reverse the course of the disease, and prenatal testing could be made available for patients at risk for these conditions."

Currently, existing treatments for ciliopathies are only to ease symptoms. However, according to Gleeson there is recent evidence that one new drug, roscovitine, could arrest polycystic kidney disease, which suggests that similar therapeutical approaches may be helpful in treating other ciliopathies.

One of the most exciting aspects of cilia disease is the connection with obesity. It is possible that modulation of these pathways could represent new avenues to explore for weight control, according to Gleeson.

Contributors to the discovery include co-first authors Stephanie L. Bielas and Jennifer L. Silhavy of UC San Diego; Francesco Brancati of the Casa Sollievo della Sofferenza-Mendel Institute and G. d'Annunzio University Foundation, Italy; Marina V. Kisseleva of the Washington University School of Medicine; Lihadh Al-Gazali of the United Arab Emirates University, United Arab Emirates; Laszlo Sztriha of the University of Szeged, Hungary; Riad A. Bayoumi of Sultan Qaboos University, Sultanate of Oman; Maha S. Zaki of the National Research Centre, Egypt; Alice Abdel-Aleem of the National Research Centre, Egypt; Ozgur Rosti of Istanbul University, Turkey; Hulya Kayserili of Istanbul University, Turkey; Dominika Swistun, Lesley Scott and Seth J. Field of UC San Diego; Enrico Bertini of the Bambino Gesu Children's Research Hospital, Italy; Eugen Boltshauser of the University Children's Hospital of Zurich, Switzerland; Elisa Fazzi of the Instituto di Ricovero e Cura a Carattere Scientifico C. Mondino Institute of Neurology, Italy; Lorena Travaglini of the Casa Sollievo della Sofferenza-Mendel Institute, Italy; Stephanie Gayral, Monique Jacoby and Stephane Schurmans of the Universite Libre de Bruxelles, Belgium; Bruno Dallapiccola of the Casa Sollievo della Sofferenza-Mendel Institute and Sapienza University, Italy; Philip W. Majerus of the Washington University School of Medicine; and Enza Maria Valente of the Casa Sollievo della Sofferenza-Mendel Institute and University of Messina, Italy.

The research was supported in part by grants from the National Institutes of Health, the Italian Ministry of Health, the Telethon Foundation Italy, the American Heart Association, the National Institute of Neurological Disorder and Stroke, the Burroughs Wellcome Fund, the March of Dimes and the Howard Hughes Medical Institute.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht The body's street sweepers
18.12.2017 | Ludwig-Maximilians-Universität München

nachricht Life on the edge prepares plants for climate change
18.12.2017 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>