Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutations in gene linked to ciliopathies

11.08.2009
An international team of scientists, led by researchers at the University of California, San Diego School of Medicine, have discovered a connection between mutations in the INPP5E gene and ciliopathies. Their findings, which may lead to new therapies for these diseases, will appear in the online edition of Nature Genetics on August 9.

Ciliopathies are a newly emerging group of diseases caused by defects in the function or structure of cellular primary cilia, which are small, cellular appendages of previously unknown function. Examples of ciliopathies include mental retardation, retinal blindness, obesity, polycystic kidney disease, liver fibrosis, ataxia, and some forms of cancer.

Joseph G. Gleeson, MD, professor of neurosciences and pediatrics at UC San Diego and a Howard Hughes Medical Institute investigator, and his colleagues showed that when two copies of mutated INPP5E are present in an individual, the result is Joubert syndrome, a condition marked by mental retardation and impaired balance. They linked the function of the protein that is encoded by this gene to enzymatic conversion of one of the most important signaling molecules in the body, phosphatylinositol, currently one of the main targets of the pharmaceutical industry to treat a host of diseases, including cancer.

The Gleeson team, led by UC San Diego scientists Stephanie Bielas, PhD, and Jennifer Silhavey, MS, discovered that the enzyme goes to a cellular structure known as the cilium, a long-forgotten organelle without clear function until recently. However, in the past five years, the field of cilia biology has exploded due to the recognition that many of our basic bodily functions are regulated and "fine-tuned" by the cilium.

Because all of the genetic mutations led to an alteration in the enzyme activity, it suggests that the phosphatylinositol pathway could be modulated using drugs already in the pharmaceutical pipeline in order to target a host of cilia-related diseases, to re-establish the normal pathway function and improve the diverse symptoms of ciliopathies.

"Many patients show symptoms that worsen over time," said Gleeson. "It is possible that if effective treatments were available, they could stop or possibly reverse the course of the disease, and prenatal testing could be made available for patients at risk for these conditions."

Currently, existing treatments for ciliopathies are only to ease symptoms. However, according to Gleeson there is recent evidence that one new drug, roscovitine, could arrest polycystic kidney disease, which suggests that similar therapeutical approaches may be helpful in treating other ciliopathies.

One of the most exciting aspects of cilia disease is the connection with obesity. It is possible that modulation of these pathways could represent new avenues to explore for weight control, according to Gleeson.

Contributors to the discovery include co-first authors Stephanie L. Bielas and Jennifer L. Silhavy of UC San Diego; Francesco Brancati of the Casa Sollievo della Sofferenza-Mendel Institute and G. d'Annunzio University Foundation, Italy; Marina V. Kisseleva of the Washington University School of Medicine; Lihadh Al-Gazali of the United Arab Emirates University, United Arab Emirates; Laszlo Sztriha of the University of Szeged, Hungary; Riad A. Bayoumi of Sultan Qaboos University, Sultanate of Oman; Maha S. Zaki of the National Research Centre, Egypt; Alice Abdel-Aleem of the National Research Centre, Egypt; Ozgur Rosti of Istanbul University, Turkey; Hulya Kayserili of Istanbul University, Turkey; Dominika Swistun, Lesley Scott and Seth J. Field of UC San Diego; Enrico Bertini of the Bambino Gesu Children's Research Hospital, Italy; Eugen Boltshauser of the University Children's Hospital of Zurich, Switzerland; Elisa Fazzi of the Instituto di Ricovero e Cura a Carattere Scientifico C. Mondino Institute of Neurology, Italy; Lorena Travaglini of the Casa Sollievo della Sofferenza-Mendel Institute, Italy; Stephanie Gayral, Monique Jacoby and Stephane Schurmans of the Universite Libre de Bruxelles, Belgium; Bruno Dallapiccola of the Casa Sollievo della Sofferenza-Mendel Institute and Sapienza University, Italy; Philip W. Majerus of the Washington University School of Medicine; and Enza Maria Valente of the Casa Sollievo della Sofferenza-Mendel Institute and University of Messina, Italy.

The research was supported in part by grants from the National Institutes of Health, the Italian Ministry of Health, the Telethon Foundation Italy, the American Heart Association, the National Institute of Neurological Disorder and Stroke, the Burroughs Wellcome Fund, the March of Dimes and the Howard Hughes Medical Institute.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>