Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutations disrupt cellular recycling and cause a childhood genetic disease

13.08.2012
Researchers at the Children's Hospital of Philadelphia identify new gene in Cornelia deLange syndrome

Genetics researchers have identified a key gene that, when mutated, causes the rare multisystem disorder Cornelia deLange syndrome (CdLS). By revealing how mutations in the HDAC8 gene disrupt the biology of proteins that control both gene expression and cell division, the research sheds light on this disease, which causes intellectual disability, limb deformations and other disabilities resulting from impairments in early development.

"As we better understand how CdLS operates at the level of cell biology, we will be better able to define strategies for devising treatments for CdLS, and possibly for related disorders," said study leader Matthew A. Deardorff, M.D., Ph.D., a pediatric genetics clinician and scientist at The Children's Hospital of Philadelphia. Deardorff also is in the Perelman School of Medicine at the University of Pennsylvania.

Deardorff and co-corresponding author Katsuhiko Shirahige, Ph.D., of the Research Center for Epigenetic Disease at the University of Tokyo, published their study online today in Nature.

The current findings add to previous discoveries by researchers at The Children's Hospital of Philadelphia. A group led by Ian Krantz, M.D., and Laird Jackson, M.D., announced in 2004 that mutations in the NIPBL gene are the primary cause of CdLS, accounting for roughly 60 percent of the "classical" cases of the disease. In 2007, Deardorff joined them to describe mutations in two additional genes, SMC1A and SMC3. First described in 1933, CdLS affects an estimated 1 in 10,000 children.

The CdLS research team at Children's Hospital has focused on the cohesin complex, a group of proteins that form a bracelet-like structure that encircles pairs of chromosomes, called sister chromatids. "Cohesin has two roles," said Deardorff. "It keeps sister chromatids together during cell division, and it allows normal transcription—the transmission of information from DNA to RNA."

Deardorff added that mutations that perturb normal cohesin function can interfere with normal human development. Such is the case in CdLS, which exemplifies a newly recognized class of diseases called cohesinopathies.

In the current study, the scientists investigated both acetylation—how an acetyl molecule is attached to part of the cohesin complex¬—and deactylation, the removal of that molecule. Normally, deactylation helps recycle cohesin to make it available during successive rounds of cell division. The study team found that mutations in the HDAC8 gene threw off normal cellular recycling of cohesin.

Mutations in the gene cause loss of HDAC8 protein activity, and consequently decrease the amount of "recharged" cohesin available to properly regulate gene transcription. This, in turn, the researchers suggest, impairs normal embryonic development and gives rise to CdLS.

The researchers showed in cell cultures that mutations in HDAC8 lead to a decrease in cohesin binding to genes, similar to that seen for cells deficient in the NIPBL gene. They also identified HDAC8 mutations in approximately 5 percent of patients with CdLS.

Because mothers of children with CdLS may carry mutations in the HDAC8 gene, identifying these mutations will be very useful in accurately counseling families of their recurrence risk—the likelihood of having a subsequent child with CdLS.

Furthermore, added Deardorff, by providing biological details of the underlying defect in CdLS, the current research suggests future approaches to treating the genetic disease. "By concentrating downstream on the biological pathway in the cohesin cycle rather than focusing on the defective gene, we may be able to eventually screen for small-molecule drugs that could be used to intervene in CdLS."

Deardorff and colleagues will continue investigate CdLS and possible therapies. Last month, the Doris Duke Charitable Foundation chose Deardorff to receive a Clinical Scientist Development Award. This three-year award, totaling $486,000, is directed to further studies of cohesin abnormalities in human disease. Deardorff is a member of Children's Hospital's Center for Cornelia deLange Syndrome and Related Diagnoses, one of the world's leading programs in studying and treating CdLS.

Financial support for this study came from the National Institutes of Health (grants HD055488, GM49758, and HD052860), the U.S.A. Cornelia deLange Syndrome Foundation, institutional funding from The Children's Hospital of Philadelphia, intramural funding from the University of Lubeck, and the Research Program of Innovative Cell Biology by Innovative Technology. Co-authors with Deardorff and Shirahige included researchers from the United States, Japan, Canada, France, Belgium, Germany, Greece and Denmark.

"HDAC8 mutations in Cornelia deLange Syndrome affect the cohesin acetylation cycle," Nature, advance online publication Aug. 12, 2012. http://dx.doi:10.1038/nature11316

About The Children's Hospital of Philadelphia: The Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country, ranking third in National Institutes of Health funding. In addition, its unique family-centered care and public service programs have brought the 516-bed hospital recognition as a leading advocate for children and adolescents. For more information, visit http://www.chop.edu.

John Ascenzi | EurekAlert!
Further information:
http://www.chop.edu

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>