Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mutations disrupt cellular recycling and cause a childhood genetic disease

Researchers at the Children's Hospital of Philadelphia identify new gene in Cornelia deLange syndrome

Genetics researchers have identified a key gene that, when mutated, causes the rare multisystem disorder Cornelia deLange syndrome (CdLS). By revealing how mutations in the HDAC8 gene disrupt the biology of proteins that control both gene expression and cell division, the research sheds light on this disease, which causes intellectual disability, limb deformations and other disabilities resulting from impairments in early development.

"As we better understand how CdLS operates at the level of cell biology, we will be better able to define strategies for devising treatments for CdLS, and possibly for related disorders," said study leader Matthew A. Deardorff, M.D., Ph.D., a pediatric genetics clinician and scientist at The Children's Hospital of Philadelphia. Deardorff also is in the Perelman School of Medicine at the University of Pennsylvania.

Deardorff and co-corresponding author Katsuhiko Shirahige, Ph.D., of the Research Center for Epigenetic Disease at the University of Tokyo, published their study online today in Nature.

The current findings add to previous discoveries by researchers at The Children's Hospital of Philadelphia. A group led by Ian Krantz, M.D., and Laird Jackson, M.D., announced in 2004 that mutations in the NIPBL gene are the primary cause of CdLS, accounting for roughly 60 percent of the "classical" cases of the disease. In 2007, Deardorff joined them to describe mutations in two additional genes, SMC1A and SMC3. First described in 1933, CdLS affects an estimated 1 in 10,000 children.

The CdLS research team at Children's Hospital has focused on the cohesin complex, a group of proteins that form a bracelet-like structure that encircles pairs of chromosomes, called sister chromatids. "Cohesin has two roles," said Deardorff. "It keeps sister chromatids together during cell division, and it allows normal transcription—the transmission of information from DNA to RNA."

Deardorff added that mutations that perturb normal cohesin function can interfere with normal human development. Such is the case in CdLS, which exemplifies a newly recognized class of diseases called cohesinopathies.

In the current study, the scientists investigated both acetylation—how an acetyl molecule is attached to part of the cohesin complex¬—and deactylation, the removal of that molecule. Normally, deactylation helps recycle cohesin to make it available during successive rounds of cell division. The study team found that mutations in the HDAC8 gene threw off normal cellular recycling of cohesin.

Mutations in the gene cause loss of HDAC8 protein activity, and consequently decrease the amount of "recharged" cohesin available to properly regulate gene transcription. This, in turn, the researchers suggest, impairs normal embryonic development and gives rise to CdLS.

The researchers showed in cell cultures that mutations in HDAC8 lead to a decrease in cohesin binding to genes, similar to that seen for cells deficient in the NIPBL gene. They also identified HDAC8 mutations in approximately 5 percent of patients with CdLS.

Because mothers of children with CdLS may carry mutations in the HDAC8 gene, identifying these mutations will be very useful in accurately counseling families of their recurrence risk—the likelihood of having a subsequent child with CdLS.

Furthermore, added Deardorff, by providing biological details of the underlying defect in CdLS, the current research suggests future approaches to treating the genetic disease. "By concentrating downstream on the biological pathway in the cohesin cycle rather than focusing on the defective gene, we may be able to eventually screen for small-molecule drugs that could be used to intervene in CdLS."

Deardorff and colleagues will continue investigate CdLS and possible therapies. Last month, the Doris Duke Charitable Foundation chose Deardorff to receive a Clinical Scientist Development Award. This three-year award, totaling $486,000, is directed to further studies of cohesin abnormalities in human disease. Deardorff is a member of Children's Hospital's Center for Cornelia deLange Syndrome and Related Diagnoses, one of the world's leading programs in studying and treating CdLS.

Financial support for this study came from the National Institutes of Health (grants HD055488, GM49758, and HD052860), the U.S.A. Cornelia deLange Syndrome Foundation, institutional funding from The Children's Hospital of Philadelphia, intramural funding from the University of Lubeck, and the Research Program of Innovative Cell Biology by Innovative Technology. Co-authors with Deardorff and Shirahige included researchers from the United States, Japan, Canada, France, Belgium, Germany, Greece and Denmark.

"HDAC8 mutations in Cornelia deLange Syndrome affect the cohesin acetylation cycle," Nature, advance online publication Aug. 12, 2012. http://dx.doi:10.1038/nature11316

About The Children's Hospital of Philadelphia: The Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country, ranking third in National Institutes of Health funding. In addition, its unique family-centered care and public service programs have brought the 516-bed hospital recognition as a leading advocate for children and adolescents. For more information, visit

John Ascenzi | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>