Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutations in a gene that impacts immune function increase susceptibility to prostate cancer

30.08.2013
Research has implications for risk of both hereditary and sporadic disease

A team of researchers led by Janet Stanford, Ph.D., of Fred Hutchinson Cancer Research Center has discovered that mutations in the gene BTNL2, which encodes a protein involved in regulating T-cell proliferation and cytokine production – both of which impact immune function – increase the risk of developing prostate cancer.

The findings, by Stanford and colleagues from the University of Washington Genome Sciences Department and the National Human Genome Research Institute, are online ahead of the print issue of Cancer Epidemiology, Biomarkers & Prevention.

A complex disease with a strong genetic component

Prostate cancer is a complex disease and its causes include a strong genetic component. It is estimated that about 42 percent of prostate cancer cases are due to heredity, or genetic variations present at birth. Five to 10 percent of those prostate cancer cases are thought to result from rare inherited mutations.

The researchers studied multiple prostate cancer patients from families with a pattern of hereditary prostate cancer, or HPC. Germline DNA provided by patients with more aggressive or early onset disease was sequenced in an attempt to identify rare genetic mutations that predispose to prostate cancer. All the participants were men of European ancestry.

Several genes with candidate mutations were highlighted, but two coding variants in the butyrophilin-like 2, or BTNL2, gene were most strongly related to the development of prostate cancer. These missense mutations that change the genetic code were subsequently confirmed to be clearly associated with prostate cancer in an independent set of HPC families and in a case-control study population.

The team found that the two BTNL2 mutations associated with elevated prostate cancer risk are rare. In the 270 HPC families used for confirmation, about 1.5 percent of affected men carried one of the mutations but unaffected men carried none. In the population-based case-control study, 2 percent of prostate cancer cases and less than 1 percent of men without prostate cancer carried one of the variants.

Mutations increased risk of both hereditary and sporadic prostate cancer

In the case-control study, men who carried one of these variants had a significant 2.5- to 2.7-fold higher risk for developing prostate cancer compared to men who did not carry either mutation.

"This research demonstrates for the first time that rare mutations in the BTNL2 gene enhance susceptibility to both hereditary and sporadic prostate cancer," said Stanford, co-director of the Program in Prostate Cancer Research a member of the Public Health Sciences Division at Fred Hutch. Common variants in this gene have been previously linked to several autoimmune and inflammatory diseases such as sarcoidosis and ulcerative colitis.

The researchers used a next-generation sequencing technology called whole-exome sequencing, which consists of sequencing all the coding regions, called exons, across the genome. The researchers used this technique to identify genetic variations within 91 men from 19 HPC families. Then, 130 candidate mutations that were observed more frequently in the men with prostate cancer were evaluated in an independent set of 270 HPC families for further confirmation.

Other candidate mutations found in this whole-exome sequencing study will be evaluated in a future investigation involving a larger group of HPC families and case-control populations to further assess their link to prostate cancer.

The National Cancer Institute, Fred Hutchinson Cancer Research Center and the Prostate Cancer Foundation funded the research.

At Fred Hutchinson Cancer Research Center, home to three Nobel laureates, interdisciplinary teams of world-renowned scientists seek new and innovative ways to prevent, diagnose and treat cancer, HIV/AIDS and other life-threatening diseases. Fred Hutch's pioneering work in bone marrow transplantation led to the development of immunotherapy, which harnesses the power of the immune system to treat cancer with minimal side effects. An independent, nonprofit research institute based in Seattle, Fred Hutch houses the nation's first and largest cancer prevention research program, as well as the clinical coordinating center of the Women's Health Initiative and the international headquarters of the HIV Vaccine Trials Network. Private contributions are essential for enabling Fred Hutch scientists to explore novel research opportunities that lead to important medical breakthroughs. For more information visit http://www.fredhutch.org or follow Fred Hutch on Facebook, Twitter or YouTube.

Kristen Woodward | EurekAlert!
Further information:
http://www.fhcrc.org

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>