Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutations in a gene that impacts immune function increase susceptibility to prostate cancer

30.08.2013
Research has implications for risk of both hereditary and sporadic disease

A team of researchers led by Janet Stanford, Ph.D., of Fred Hutchinson Cancer Research Center has discovered that mutations in the gene BTNL2, which encodes a protein involved in regulating T-cell proliferation and cytokine production – both of which impact immune function – increase the risk of developing prostate cancer.

The findings, by Stanford and colleagues from the University of Washington Genome Sciences Department and the National Human Genome Research Institute, are online ahead of the print issue of Cancer Epidemiology, Biomarkers & Prevention.

A complex disease with a strong genetic component

Prostate cancer is a complex disease and its causes include a strong genetic component. It is estimated that about 42 percent of prostate cancer cases are due to heredity, or genetic variations present at birth. Five to 10 percent of those prostate cancer cases are thought to result from rare inherited mutations.

The researchers studied multiple prostate cancer patients from families with a pattern of hereditary prostate cancer, or HPC. Germline DNA provided by patients with more aggressive or early onset disease was sequenced in an attempt to identify rare genetic mutations that predispose to prostate cancer. All the participants were men of European ancestry.

Several genes with candidate mutations were highlighted, but two coding variants in the butyrophilin-like 2, or BTNL2, gene were most strongly related to the development of prostate cancer. These missense mutations that change the genetic code were subsequently confirmed to be clearly associated with prostate cancer in an independent set of HPC families and in a case-control study population.

The team found that the two BTNL2 mutations associated with elevated prostate cancer risk are rare. In the 270 HPC families used for confirmation, about 1.5 percent of affected men carried one of the mutations but unaffected men carried none. In the population-based case-control study, 2 percent of prostate cancer cases and less than 1 percent of men without prostate cancer carried one of the variants.

Mutations increased risk of both hereditary and sporadic prostate cancer

In the case-control study, men who carried one of these variants had a significant 2.5- to 2.7-fold higher risk for developing prostate cancer compared to men who did not carry either mutation.

"This research demonstrates for the first time that rare mutations in the BTNL2 gene enhance susceptibility to both hereditary and sporadic prostate cancer," said Stanford, co-director of the Program in Prostate Cancer Research a member of the Public Health Sciences Division at Fred Hutch. Common variants in this gene have been previously linked to several autoimmune and inflammatory diseases such as sarcoidosis and ulcerative colitis.

The researchers used a next-generation sequencing technology called whole-exome sequencing, which consists of sequencing all the coding regions, called exons, across the genome. The researchers used this technique to identify genetic variations within 91 men from 19 HPC families. Then, 130 candidate mutations that were observed more frequently in the men with prostate cancer were evaluated in an independent set of 270 HPC families for further confirmation.

Other candidate mutations found in this whole-exome sequencing study will be evaluated in a future investigation involving a larger group of HPC families and case-control populations to further assess their link to prostate cancer.

The National Cancer Institute, Fred Hutchinson Cancer Research Center and the Prostate Cancer Foundation funded the research.

At Fred Hutchinson Cancer Research Center, home to three Nobel laureates, interdisciplinary teams of world-renowned scientists seek new and innovative ways to prevent, diagnose and treat cancer, HIV/AIDS and other life-threatening diseases. Fred Hutch's pioneering work in bone marrow transplantation led to the development of immunotherapy, which harnesses the power of the immune system to treat cancer with minimal side effects. An independent, nonprofit research institute based in Seattle, Fred Hutch houses the nation's first and largest cancer prevention research program, as well as the clinical coordinating center of the Women's Health Initiative and the international headquarters of the HIV Vaccine Trials Network. Private contributions are essential for enabling Fred Hutch scientists to explore novel research opportunities that lead to important medical breakthroughs. For more information visit http://www.fredhutch.org or follow Fred Hutch on Facebook, Twitter or YouTube.

Kristen Woodward | EurekAlert!
Further information:
http://www.fhcrc.org

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>