Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutation stops worms from getting drunk

16.07.2014

Neuroscientists at The University of Texas at Austin have generated mutant worms that do not get intoxicated by alcohol, a result that could lead to new drugs to treat the symptoms of people going through alcohol withdrawal.

The scientists accomplished this feat by inserting a modified human alcohol target into the worms, as reported this week in The Journal of Neuroscience.


This is an image of a sober versus intoxicated worm, accompanied by a cartoon depicting the same states in a human.

Credit: Image courtesy of Jon Pierce-Shimomura of The University of Texas at Austin.

"This is the first example of altering a human alcohol target to prevent intoxication in an animal," says corresponding author, Jon Pierce-Shimomura, assistant professor in the university's College of Natural Sciences and Waggoner Center for Alcohol and Addiction Research.

An alcohol target is any neuronal molecule that binds alcohol, of which there are many.

One important aspect of this modified alcohol target, a neuronal channel called the BK channel, is that the mutation only affects its response to alcohol. The BK channel typically regulates many important functions including activity of neurons, blood vessels, the respiratory tract and bladder. The alcohol-insensitive mutation does not disrupt these functions at all.

"We got pretty lucky and found a way to make the channel insensitive to alcohol without affecting its normal function," says Pierce-Shimomura.

The scientists believe the research has potential application for treating people addicted to alcohol.

"Our findings provide exciting evidence that future pharmaceuticals might aim at this portion of the alcohol target to prevent problems in alcohol abuse disorders," says Pierce-Shimomura. "However, it remains to be seen which aspects of these disorders would benefit."

Unlike drugs such as cocaine, which have a specific target in the nervous system, the effects of alcohol on the body are complex and have many targets across the brain. The various other aspects of alcohol addiction, such as tolerance, craving and the symptoms of withdrawal, may be influenced by different alcohol targets.

The worms used in the study, Caenorhabditis elegans, model intoxication well. Alcohol causes the worms to slow their crawling with less wriggling from side to side. The intoxicated worms also stop laying eggs, which build up in their bodies and can be easily counted.

Unfortunately, C. elegans are not as ideal for studying the other areas of alcohol addiction, but mice make an excellent model. The modified human BK channel used in the study, which is based on a mutation discovered by lead author and graduate student Scott Davis, could be inserted into mice. These modified mice would allow scientists to investigate whether this particular alcohol target also affects tolerance, craving and other symptoms relevant to humans.

Pierce-Shimomura speculated that their research could even be used to develop a 'James Bond' drug someday, which would enable a spy to drink his opponent under the table, without getting drunk himself. Such a drug could potentially be used to treat alcoholics, since it would counteract the intoxicating and potentially addicting effects of the alcohol.

###

Davis and Pierce-Shimomura's co-authors at The University of Texas at Austin were research associate Luisa Scott and undergraduate student Kevin Hu.

This research was funded by the ABMRF/The Foundation for Alcohol Research, the National Institute on Alcohol Abuse and Alcoholism and the Waggoner Center for Alcohol and Addiction Research at The University of Texas at Austin.

Steve Franklin | Eurek Alert!

More articles from Life Sciences:

nachricht A cell senses its own curves: New research from the MBL Whitman Center
29.04.2016 | Marine Biological Laboratory

nachricht A New Discovery in the Fight against Cancer: Tumor Cells Switch to a Different Mode
29.04.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>