Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutation Makes Cells Sloppy

12.05.2009
Whether blood, colon or breast cancer: In approximately 80 percent of all tumour diseases, the p53 gene has mutated in human cancer cells. Scientists of the University of Würzburg Biocenter depict the consequences of this in the Cancer Research journal.

New blood cells develop, cells of the intestinal mucosa renew themselves, dead skin cells are replaced - cells continually divide in the human body. If any errors occur in this process, danger is imminent: Diseases can develop, for instance cancer, and that is why the organism controls this complicated process very carefully.

The p53 contains the blueprint for a protein that is essential for a controlled cell division. In general, it is proteins that spur and control a cell division. Their production in the cell, therefore, follows a precise time schedule.

So the genes that provide the parameters for building the proteins must be activated and deactivated again at very specific points in time. "Above all, it must be ensured that these genes are deactivated after the cell division; otherwise, the cell will continue to grow in an uncontrolled manner", says Professor Stefan Gaubatz.

DNA damages bring the p53 protein on the scene

In every cell division, there are certain control points at which the cell checks the proper sequence of the division, detects any damage done and repairs it. If the DNA has been damaged, the p53 protein comes on the scene: It ensures that from a major protein complex called LINC, a part that carries the designation B-MYB detaches. The remaining part of the complex then silences genes that promote the cell growth. The cell in turn slows down its growth and thus gains enough time to repair the damages. It is this mechanism that has been elucidated by the study group of Stefan Gaubatz.

Without p53, defects accumulate

In many cancer cells, the p53 has mutated and thus lost its function. "The tumour cells can no longer completely stop the cell cycle then", the Würzburg researcher explains. This makes them sloppy and hasty: Defects in the DNA are not repaired, but the cell division proceeds. Damages accumulate and may make the tumour more and more difficult to treat. It is also conceivable that this mechanism triggers carcinogenesis in the first place.

What exactly happens in cancer cells with mutated p53? The Gaubatz team has found out with the help of cell cultures: Even if the DNA gets damaged in the cell division process, the composition of the major LINC protein complex remains unchanged - the B-MYB protein part no longer detaches. Then the researchers, by way of experiment, made sure that this step did take place nevertheless. The result: The cancer cells were able to stop the cell division process again.

Next steps in research

The next steps now consist in verifying this effect in animal models. In addition, the scientists want to investigate more closely how B-MYB and the protein complex are regulated. From their research work, they ultimately expect new approaches for improved cancer treatment.

The Munich-based Wilhelm-Sander foundation supports the project, and so does the Deutsche Forschungsgemeinschaft within the scope of the Transregio SFB TR17 (Ras-dependent pathways in human cancer).

For further information

Prof. Dr. Stefan Gaubatz, Lehrstuhl für Physiologische Chemie I, University of Würzburg, phone ++49 931 31-84138, stefan.gaubatz@biozentrum.uni-wuerzburg.de

"B-MYB is required for recovery from the DNA damage-induced G2 checkpoint in p53 mutant cells", Mirijam Mannefeld, Elena Klassen, Stefan Gaubatz, Cancer Research, 2009, 69 (9), pp. 4073-4080, doi:10.1158/0008-5472.CAN-08-4156

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de/

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>