Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutation Makes Cells Sloppy

12.05.2009
Whether blood, colon or breast cancer: In approximately 80 percent of all tumour diseases, the p53 gene has mutated in human cancer cells. Scientists of the University of Würzburg Biocenter depict the consequences of this in the Cancer Research journal.

New blood cells develop, cells of the intestinal mucosa renew themselves, dead skin cells are replaced - cells continually divide in the human body. If any errors occur in this process, danger is imminent: Diseases can develop, for instance cancer, and that is why the organism controls this complicated process very carefully.

The p53 contains the blueprint for a protein that is essential for a controlled cell division. In general, it is proteins that spur and control a cell division. Their production in the cell, therefore, follows a precise time schedule.

So the genes that provide the parameters for building the proteins must be activated and deactivated again at very specific points in time. "Above all, it must be ensured that these genes are deactivated after the cell division; otherwise, the cell will continue to grow in an uncontrolled manner", says Professor Stefan Gaubatz.

DNA damages bring the p53 protein on the scene

In every cell division, there are certain control points at which the cell checks the proper sequence of the division, detects any damage done and repairs it. If the DNA has been damaged, the p53 protein comes on the scene: It ensures that from a major protein complex called LINC, a part that carries the designation B-MYB detaches. The remaining part of the complex then silences genes that promote the cell growth. The cell in turn slows down its growth and thus gains enough time to repair the damages. It is this mechanism that has been elucidated by the study group of Stefan Gaubatz.

Without p53, defects accumulate

In many cancer cells, the p53 has mutated and thus lost its function. "The tumour cells can no longer completely stop the cell cycle then", the Würzburg researcher explains. This makes them sloppy and hasty: Defects in the DNA are not repaired, but the cell division proceeds. Damages accumulate and may make the tumour more and more difficult to treat. It is also conceivable that this mechanism triggers carcinogenesis in the first place.

What exactly happens in cancer cells with mutated p53? The Gaubatz team has found out with the help of cell cultures: Even if the DNA gets damaged in the cell division process, the composition of the major LINC protein complex remains unchanged - the B-MYB protein part no longer detaches. Then the researchers, by way of experiment, made sure that this step did take place nevertheless. The result: The cancer cells were able to stop the cell division process again.

Next steps in research

The next steps now consist in verifying this effect in animal models. In addition, the scientists want to investigate more closely how B-MYB and the protein complex are regulated. From their research work, they ultimately expect new approaches for improved cancer treatment.

The Munich-based Wilhelm-Sander foundation supports the project, and so does the Deutsche Forschungsgemeinschaft within the scope of the Transregio SFB TR17 (Ras-dependent pathways in human cancer).

For further information

Prof. Dr. Stefan Gaubatz, Lehrstuhl für Physiologische Chemie I, University of Würzburg, phone ++49 931 31-84138, stefan.gaubatz@biozentrum.uni-wuerzburg.de

"B-MYB is required for recovery from the DNA damage-induced G2 checkpoint in p53 mutant cells", Mirijam Mannefeld, Elena Klassen, Stefan Gaubatz, Cancer Research, 2009, 69 (9), pp. 4073-4080, doi:10.1158/0008-5472.CAN-08-4156

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de/

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>