Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutation Makes Cells Sloppy

12.05.2009
Whether blood, colon or breast cancer: In approximately 80 percent of all tumour diseases, the p53 gene has mutated in human cancer cells. Scientists of the University of Würzburg Biocenter depict the consequences of this in the Cancer Research journal.

New blood cells develop, cells of the intestinal mucosa renew themselves, dead skin cells are replaced - cells continually divide in the human body. If any errors occur in this process, danger is imminent: Diseases can develop, for instance cancer, and that is why the organism controls this complicated process very carefully.

The p53 contains the blueprint for a protein that is essential for a controlled cell division. In general, it is proteins that spur and control a cell division. Their production in the cell, therefore, follows a precise time schedule.

So the genes that provide the parameters for building the proteins must be activated and deactivated again at very specific points in time. "Above all, it must be ensured that these genes are deactivated after the cell division; otherwise, the cell will continue to grow in an uncontrolled manner", says Professor Stefan Gaubatz.

DNA damages bring the p53 protein on the scene

In every cell division, there are certain control points at which the cell checks the proper sequence of the division, detects any damage done and repairs it. If the DNA has been damaged, the p53 protein comes on the scene: It ensures that from a major protein complex called LINC, a part that carries the designation B-MYB detaches. The remaining part of the complex then silences genes that promote the cell growth. The cell in turn slows down its growth and thus gains enough time to repair the damages. It is this mechanism that has been elucidated by the study group of Stefan Gaubatz.

Without p53, defects accumulate

In many cancer cells, the p53 has mutated and thus lost its function. "The tumour cells can no longer completely stop the cell cycle then", the Würzburg researcher explains. This makes them sloppy and hasty: Defects in the DNA are not repaired, but the cell division proceeds. Damages accumulate and may make the tumour more and more difficult to treat. It is also conceivable that this mechanism triggers carcinogenesis in the first place.

What exactly happens in cancer cells with mutated p53? The Gaubatz team has found out with the help of cell cultures: Even if the DNA gets damaged in the cell division process, the composition of the major LINC protein complex remains unchanged - the B-MYB protein part no longer detaches. Then the researchers, by way of experiment, made sure that this step did take place nevertheless. The result: The cancer cells were able to stop the cell division process again.

Next steps in research

The next steps now consist in verifying this effect in animal models. In addition, the scientists want to investigate more closely how B-MYB and the protein complex are regulated. From their research work, they ultimately expect new approaches for improved cancer treatment.

The Munich-based Wilhelm-Sander foundation supports the project, and so does the Deutsche Forschungsgemeinschaft within the scope of the Transregio SFB TR17 (Ras-dependent pathways in human cancer).

For further information

Prof. Dr. Stefan Gaubatz, Lehrstuhl für Physiologische Chemie I, University of Würzburg, phone ++49 931 31-84138, stefan.gaubatz@biozentrum.uni-wuerzburg.de

"B-MYB is required for recovery from the DNA damage-induced G2 checkpoint in p53 mutant cells", Mirijam Mannefeld, Elena Klassen, Stefan Gaubatz, Cancer Research, 2009, 69 (9), pp. 4073-4080, doi:10.1158/0008-5472.CAN-08-4156

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de/

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>