Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutation Makes Cells Sloppy

12.05.2009
Whether blood, colon or breast cancer: In approximately 80 percent of all tumour diseases, the p53 gene has mutated in human cancer cells. Scientists of the University of Würzburg Biocenter depict the consequences of this in the Cancer Research journal.

New blood cells develop, cells of the intestinal mucosa renew themselves, dead skin cells are replaced - cells continually divide in the human body. If any errors occur in this process, danger is imminent: Diseases can develop, for instance cancer, and that is why the organism controls this complicated process very carefully.

The p53 contains the blueprint for a protein that is essential for a controlled cell division. In general, it is proteins that spur and control a cell division. Their production in the cell, therefore, follows a precise time schedule.

So the genes that provide the parameters for building the proteins must be activated and deactivated again at very specific points in time. "Above all, it must be ensured that these genes are deactivated after the cell division; otherwise, the cell will continue to grow in an uncontrolled manner", says Professor Stefan Gaubatz.

DNA damages bring the p53 protein on the scene

In every cell division, there are certain control points at which the cell checks the proper sequence of the division, detects any damage done and repairs it. If the DNA has been damaged, the p53 protein comes on the scene: It ensures that from a major protein complex called LINC, a part that carries the designation B-MYB detaches. The remaining part of the complex then silences genes that promote the cell growth. The cell in turn slows down its growth and thus gains enough time to repair the damages. It is this mechanism that has been elucidated by the study group of Stefan Gaubatz.

Without p53, defects accumulate

In many cancer cells, the p53 has mutated and thus lost its function. "The tumour cells can no longer completely stop the cell cycle then", the Würzburg researcher explains. This makes them sloppy and hasty: Defects in the DNA are not repaired, but the cell division proceeds. Damages accumulate and may make the tumour more and more difficult to treat. It is also conceivable that this mechanism triggers carcinogenesis in the first place.

What exactly happens in cancer cells with mutated p53? The Gaubatz team has found out with the help of cell cultures: Even if the DNA gets damaged in the cell division process, the composition of the major LINC protein complex remains unchanged - the B-MYB protein part no longer detaches. Then the researchers, by way of experiment, made sure that this step did take place nevertheless. The result: The cancer cells were able to stop the cell division process again.

Next steps in research

The next steps now consist in verifying this effect in animal models. In addition, the scientists want to investigate more closely how B-MYB and the protein complex are regulated. From their research work, they ultimately expect new approaches for improved cancer treatment.

The Munich-based Wilhelm-Sander foundation supports the project, and so does the Deutsche Forschungsgemeinschaft within the scope of the Transregio SFB TR17 (Ras-dependent pathways in human cancer).

For further information

Prof. Dr. Stefan Gaubatz, Lehrstuhl für Physiologische Chemie I, University of Würzburg, phone ++49 931 31-84138, stefan.gaubatz@biozentrum.uni-wuerzburg.de

"B-MYB is required for recovery from the DNA damage-induced G2 checkpoint in p53 mutant cells", Mirijam Mannefeld, Elena Klassen, Stefan Gaubatz, Cancer Research, 2009, 69 (9), pp. 4073-4080, doi:10.1158/0008-5472.CAN-08-4156

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de/

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>