Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutation discovery may improve treatment for rare brain tumor type

13.01.2014
Study findings could lead to targeted therapies for hard-to-treat craniopharyngiomas

Scientists have identified a mutated gene that causes a type of tenacious, benign brain tumor that can have devastating lifelong effects. Currently, the tumor can only be treated with challenging repeated surgeries and radiation.

The discovery, reported in Nature Genetics, is encouraging, because it may be possible to attack the tumors with targeted drugs already in use for other kinds of tumors, said the investigators from Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Massachusetts General Hospital, and the Broad Institute of MIT and Harvard.

The mutated gene, known as BRAF, was found in almost all samples of tumors called papillary craniopharyngiomas. This is one of two types of craniopharyngiomas—the other being adamantinomatous—that develop in the base of the brain near the pituitary gland, hypothalamus, and optic nerves. The papillary craniopharyngiomas occur mainly in adults; adamantinomatous tumors generally affect children.

The researchers identified a different mutant gene that drives the tumors in children. Drugs that target these adamantinomatous tumors are not yet clinically available, but may be in the future, said the researchers.

"From a clinical perspective, identifying the BRAF mutation in the papillary tumors is really wonderful, because we have drugs that get into the brain and inhibit this pathway," said Sandro Santagata, MD, PhD, a co-senior author of the paper. "Previously, there were no medical treatments—only surgery and radiation—and now we may be able to go from this discovery right to a well-established drug therapy." BRAF inhibitors are currently used in treating malignant melanoma when that mutation is present.

Priscilla Brastianos, MD, co-first author of the study, and Santagata said plans are underway to design a multicenter clinical trial to investigate the efficacy of a BRAF inhibitor in patients with papillary craniopharyngiomas.

Craniopharyngiomas occur in less than one in 100,000 people. They are slow-growing tumors that don't metastasize, but they can cause severe complications, including headaches, visual impairment, hormonal imbalances, obesity and short stature. Even with expert neurosurgery, it is difficult to completely remove the tumors without damaging normal structures, and the tumors often recur.

The investigators were surprised to find that the single mutated BRAF gene was the sole driver of 95 percent of the papillary craniopharyngiomas they analyzed with whole-exome DNA sequencing. "We were really surprised to find that something as simple as a BRAF mutation by itself, rather than multiple mutations, is what drives these tumors," said Santagata.

One scenario, should the inhibitors prove successful in halting or reversing growth of the tumors, would be to test the drugs preoperatively with the aim of shrinking the tumor so less radical surgery would be needed, said Santagata.

A different mutation, in a gene called CTNNB1, was identified as the principal abnormality in the pediatric tumors, according to the report. This mutation causes overactivity in the beta-catenin molecular growth-signaling pathway. Unlike with the BRAF mutation, drugs that inhibit the CTNNB1 abnormality have not yet reached the clinic, but several groups are working on them, Santagata said.

Santagata, a pathologist, is affiliated with Dana-Farber/Boston Children's, Brigham and Women's Hospital and Harvard Medical School (HMS). Co-senior authors of the study are Mark Kieran, MD, PhD, of Dana-Farber/Boston Children's and HMS; and Gad Getz, PhD, of the Broad Institute, Massachusetts General Hospital (MGH) and HMS.

The study has three co-first authors: Brastianos of MGH, Dana-Farber Cancer Institute, HMS and the Broad; Amaro Taylor-Weiner of the Broad; and Peter Manley, MD, of Dana-Farber/Boston Children's.

The research was supported by Pedals for Pediatrics and the Clark family.

The Dana-Farber/Boston Children's Cancer and Blood Disorders Center brings together two internationally known research and teaching institutions that have provided comprehensive care for pediatric oncology and hematology patients since 1947. The Harvard Medical School affiliates share a clinical staff that delivers inpatient care at Boston Children's Hospital and outpatient care at the Dana-Farber Cancer Institute's Jimmy Fund Clinic. Dana-Farber/Boston Children's brings the results of its pioneering research and clinical trials to patients' bedsides through five clinical centers: the Blood Disorders Center, the Brain Tumor Center, the Hematologic Malignancies Center, the Solid Tumors Center, and the Stem Cell Transplant Center.

Irene Sege | EurekAlert!
Further information:
http://www.dana-farber.org/

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>