Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutation causing wrong-way plumbing explains 1 type of blue-baby syndrome

13.05.2013
Defects in developmental pathway associated with congenital condition of heart-lung connection
Total anomalous pulmonary venous connection (TAPVC), one type of "blue baby" syndrome, is a potentially deadly congenital disorder that occurs when pulmonary veins don't connect normally to the left atrium of the heart. This results in poorly oxygenated blood throughout the body, and TAPVC babies are born cyanotic - blue-colored - from lack of oxygen.

TAPVC is usually detected in newborns when babies are blue despite breathing normally. Life-threatening forms of the disorder are rare – about 1 in 15,000 live births. A closely related, but milder disorder, partial anomalous pulmonary venous connection (PAPVC), in which only some of the pulmonary veins go awry, is found in as many as 1 in 150 individuals.

Now, researchers have found that a mutation in a key molecule active during embryonic development makes the plumbing between the immature heart and lungs short-circuit, disrupting the delivery of oxygenated blood to the brain and other organs. The mutation ultimately causes blood to flow in circles from the lungs to the heart's right side and back to the lungs.

Senior author Jonathan A. Epstein, MD, chair of the Department of Cell and Developmental Biology, at the Perelman School of Medicine, University of Pennsylvania, and colleagues from The Children's Hospital of Philadelphia, describe in Nature Medicine, that a molecule called Semaphorin 3d (Sema3d) guides the development of endothelial cells and is crucial for normal development of pulmonary veins. It is mutations in Sema3d that cause embryonic blood vessels to hook up in the wrong way.

Epstein is also the William Wikoff Smith professor and scientific director of the Penn Cardiovascular Institute. Karl Degenhardt, MD, PhD, assistant professor at The Children's Hospital of Philadelphia; Manvendra K. Singh, PhD, an instructor of Cell and Developmental Biology at Penn; and Haig Aghajanian, a graduate student in Cell and Molecular Biology at Penn are the co-first authors on the paper.

Physicians thought that TAPVC occurred when the precursor cells of the pulmonary vein failed to form at the proper location on the embryonic heart atrium. However, analysis of Sema3d mutant embryos showed that TAPVC occurs despite normal formation of embryonic precursor veins.

In these embryos, the maturing pulmonary venous plexus, a tangle of vessels, does not connect just with properly formed precursor veins. In the absence of the Sema3d guiding signal, endothelial tubes form in a region that is not normally full of vessels, resulting in aberrant connections. Normally, Sema3d provides a repulsive cue to endothelial cells in this area, establishing a boundary.

Sequencing of Sema3d in individuals affected with anomalous pulmonary veins identified a point mutation that adversely affects Sema3d function in humans. The mutation causes Sema3d to lose its normal ability to repel certain types of cells to be able to guide other cells to grow in the correct place. When Sema3d can't keep developing veins in their proper space, the plumbing goes haywire.

Since it's already known that semaphorins guide blood vessels and axons to grow properly, the authors surmise that Sema3d could be used for anti-angiogenesis therapies for cancer, to treat diabetic retinopathy, or to help to grow new blood vessels to repair damaged hearts or other organs.


Daniele Massera, Qiaohong Wang, Jun Li, Li Li, Connie Choi, Amanda D. Yzaguirre, Lauren J. Francey, Emily Gallant, Ian D. Krantz, and Peter J. Gruber are co-authors.

This work was supported by the National Institutes of Health (NIH 5K12HD043245-07, NIH T32 GM07229, and NIH UO1 HL100405).

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 16 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $398 million awarded in the 2012 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region. Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2012, Penn Medicine provided $827 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Charge Order and Electron Localization in a Molecule-Based Solid
22.01.2018 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Combination of Resistance Genes Offers Better Protection for Wheat against Powdery Mildew

22.01.2018 | Agricultural and Forestry Science

Two dimensional circuit with magnetic quasi-particles

22.01.2018 | Physics and Astronomy

Electrical fields drive nano-machines a 100,000 times faster than previous methods

22.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>