Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mutated gene in zebrafish sheds light on blindness in humans

Landmark study by scientists at Florida State University

Among zebrafish, the eyes have it. Inside them is a mosaic of light-sensitive cells whose structure and functions are nearly identical to those of humans. There, biologists at The Florida State University discovered a gene mutation that determines if the cells develop as rods (the photoreceptors responsible for dim-light vision) or as cones (the photoreceptors needed for color vision).

Described in a paper published in the Proceedings of the National Academy of Sciences (PNAS), the landmark study of retinal development in zebrafish larvae and the genetic switch it has identified should shed new light on the molecular mechanisms underlying that development and, consequently, provide needed insight on inherited retinal diseases in humans.

From FSU's Department of Biological Science and Program in Neuroscience, doctoral candidate Karen Alvarez-Delfin (first author of the PNAS paper), postdoctoral fellow Ann Morris (second author), and Associate Professor James M. Fadool are the first scientists to identify the crucial function of a previously known gene called "tbx2b." The researchers have named the newfound allele (a different form of a gene) "lor" -- for "lots-of-rods" -- because the mutation results in too many rods and fewer ultraviolet cones than in the normal eye.

"Our goal is to generate animal models of inherited diseases of the eye and retina to understand the progression of disease and find more effective treatments for blindness," said Fadool, faculty advisor to Alvarez-Delfin and principal investigator for Morris's ongoing research. "We are excited about the mutation that Karen has identified because it is one of the few mutations in this clinically critical pathway that is responsible for cells developing into one photoreceptor subtype rather than another."

"What is striking in this case is that the photoreceptor cell changes we observed in the retinas of zebrafish are opposite to the changes identified in Enhanced S-cone syndrome (ESCS), an inherited human retinal dystrophy in which the rods express genes usually only found in cones, eventually leading to blindness," Alvarez-Delfin said. "Equally surprising is that this study and others from our lab show that while alterations in photoreceptor development in the human and mouse eyes lead to retinal degeneration and blindness, they don't in zebrafish. Therefore, the work from our Florida State lab and with our collaborators at the University of Pennsylvania, Vanderbilt University and the University of Louisville should provide a model for better understanding the differences in outcomes between mammals and fish, and why the human mutation leads to degenerative disease."

Morris calls the zebrafish an ideal genetic model for studies of development and disease. The common aquarium species are vertebrates, like humans. Their retinal organization and cell types are similar to those in humans. Zebrafish mature rapidly, and lay many eggs. The embryos are transparent, and they develop externally, unlike mammals, which develop in utero.

"This lets us study developmental processes such as the formation of tissues and organs in living animals," she said.

"From a developmental biology perspective, our research will help us unravel the competing signals necessary for generating the different photoreceptor cell types in their appropriate numbers and arrangement," Morris said. "The highly specialized nature of rods and cones may make them particularly vulnerable to inherited diseases and environmental damage in humans. Understanding the genetic processes of photoreceptor development could lead to clinical treatments for the millions of people affected by photoreceptor cell dystrophies such as retinitis pigmentosa and macular degeneration."

The mosaic arrangement of photoreceptors in fish was first described more than 100 years ago, but the J. Fadool laboratory at Florida State was the first to successfully take advantage of the pattern to identify mutations affecting photoreceptor development and degeneration.

"Imagine a tile mosaic," Fadool said. "That is the kind of geometric pattern formed by the rod and cone photoreceptors in the zebrafish retina. This mosaic is similar to the pattern of a checkerboard but with four colors rather than two alternating in a square pattern. The red-, green-, blue-, and ultraviolet-sensitive cones are always arranged in a precise repeating pattern. Human retinas have a photoreceptor mosaic, too, but here the term is used loosely, because while the arrangement of the different photoreceptors is nonrandom, they don't form the geometric pattern observed in zebrafish.

"So how do we ask a fish if it has photoreceptor defects?" he asked.

Fadool explained that because the mosaic pattern of zebrafish photoreceptors is so precise, mutations causing subtle alterations are easier to uncover than in retinas with a "messier" arrangement.

"Just as we can easily recognize a checkerboard mistakenly manufactured with some of the squares changed from black to red or with all-black squares, by using fluorescent labeling and fluorescence microscopes we can see similar changes in the pattern of the zebrafish photoreceptor mosaic," he said. "Karen showed that within the mosaic of the lots-of-rod fish, the position on the checkerboard normally occupied by a UV cone is replaced with a rod. The identity of the mutated gene is then discovered using a combination of classical genetics and genomic resources."

To access the PNAS paper ("tbx2b is required for ultraviolet photoreceptor cell specification during zebrafish retinal development"), visit the journal's Web site at

Funding for the Fadool laboratory's zebrafish research comes in large part from a five-year grant totaling more than $1.7 million from the National Institutes of Health.

Ann Morris | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>