Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutated Gene Found in Dog Disease the Same in Humans

19.04.2011
Tibetian Terrier dogs could play key role in developing therapy for early-onset Parkinson’s

University of Missouri researchers believe both man and animal will benefit from their discovery that the same gene mutation found in Tibetan Terrier dogs can also be found in a fatal human neurological disorder related to Parkinson’s disease.

Fabiana Farias, a doctoral candidate in Area Genetics at the University of Missouri, found the mutation as part of her thesis research. Gary Johnson, associate professor of Veterinary Pathobiology; Martin Katz, professor of Veterinary Pathobiology, and Dennis O’Brien, a professor in the Department of Veterinary Medicine and Surgery, along with a host of researchers from MU’s College of Veterinary Medicine; College of Agriculture, Food and Natural Resources (CAFNR) and the Mason Eye Institute, recently published the findings in Neurobiology of Disease.

The disease in Tibetian Terriers is called adult-onset neuronal ceroid-lipofuscinosis (NCL). Within the dogs’ cells in the brain and eye, material that should be “recycled” builds up and interferes with nerve cell function. Due to this buildup, around the age of five years old, the dog begins to exhibit dementia, impaired visual behavior, loss of coordination, and shows unwarranted aggression.

NCL ultimately took the life of Topper, a Tibetian Terrier owned by Lynn Steinhaus of Columbia. Steinhaus said Topper showed increased shyness around age five, and showed a loss of muscle control later. Topper also suffered seizures before he was euthanized in July of 2009. Topper’s DNA was used to further the study.

“This is really hard disease for dog owners to go through,” Steinhaus said. “Those seizures are just terrible.”

While there are many forms of NCL in humans, the symptoms of NCL are similar in people and dogs, and the disease is ultimately fatal for both. Utilizing the canine genome map and DNA samples from dogs diagnosed with NCL, the researchers were able to pinpoint the specific gene that causes NCL. The mutation they discovered in dogs, however, causes a hereditary form of Parkinson’s disease in humans. This suggests that the recycling that goes awry in NCL may also be involved in degenerative diseases like Parkinson’s.

Now, DNA from dogs can be tested to identify the presence of the mutated gene, and that test can ensure that Tibetan Terrier breeders do not pass it on to the next generation. The researchers also believe that they may be able to test -potential human therapies on the animal population because they can use the DNA test to identify affected dogs before they start to show symptoms.

“Looking through samples collected from hundreds of dogs over many years, we got to the point where we’re able to say this is a disease caused by the mutation of one gene,” Katz said. “Finding that gene was like finding a single house in a very large city – but we had the dog family history and the tools to look through the city in a systematic way to locate address of the mutation responsible for the disease.”

The publication is the result of almost 10 years of work, and the researchers believe it couldn’t have occurred without the unique combination of animal and human medical science at the University of Missouri.

“Dogs and people suffer from the same diseases, and it’s much easier to discover gene issues in dogs because of the unique genetics of pure-bred dogs,” O’Brien said. “Because we have a medical school and veterinary school near each other, we can find the genes in the dog and then find out if they cause a similar disease in people.”

Steven Adams | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>