Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutant prions help cells foil harmful protein misfolding

21.03.2011
Romping clumps of misfolded proteins are prime suspects in many neurological disorders including Alzheimer's, Parkinson's, and Creutzfeld-Jakob Disease.

Those diseases are devastating and incurable, but a team of biologists at Brown University reports that cells can fix the problems themselves with only a little bit of help. The insight suggests that there are more opportunities to develop a therapy for protein misfolding than scientists had thought.

"There are multiple steps that you could target," said Susanne DiSalvo, a Brown biology graduate student and lead author of a paper published in advance online March 20 in Nature Structural and Molecular Biology.

In the study, the research team, led by Tricia Serio, associate professor of medical science, explains how two different beneficial mutant prions managed to foil the amplification of harmful clumps of misfolded proteins in yeast. Cells have an internal quality assurance system to break up and refold misfolded proteins, but that system can be overwhelmed by diseases. DiSalvo was the first to observe that the mutants act at distinct stages to tip the balance back in favor of the cells, allowing them to overcome the problem.

Serio says the molecular mechanisms appear to explain how similar mutants solve protein misfolding in mammals, including people. The phenomenon had been poorly understood and has never been exploited to develop a successful therapy.

Misfolding is a vulnerable process

Until now most scientists guessed that the only way to stop the runaway misfolding was right at the beginning and assumed the mutants must be blocking that first step to keep the protein in a harmless form. DiSalvo's work instead suggests that there are many opportunities throughout the process where even a mild intervention could give cells what they need to gain the upper hand, Serio said.

"That's one of the biggest outcomes of Susanne's work: that if you just even slightly interfere with this process, the cell can deal with it and get rid of it," Serio said. "The dogma in the field is that these conformations were so abnormal the cell couldn't resolve them. But what we've found is that this process of misfolding is so efficient the cells can't keep up with it. If you make it even just a little bit less efficient the cell can get rid of the pathological state."

One mutant prion, Q24R, hinders the ability of misfolded proteins to aggregate into harmful clumps. It's like a dryer sheet that cuts down on static cling and makes it easier to fold laundry. Another helpful mutant prion known as G58D, assists the cell by speeding up its ability to unfold and refold misfolded proteins. That's more like a friend who helps untangle strings of holiday lights when they come out of storage.

DiSalvo's experiments showed how the mutants and cells work together. Cells would only be cured when she both added a mutant and allowed the cells' own quality assurance system to work. Adding the mutant G58D, for example, could cure a cell of infection by the Sup35 prion, but if she perturbed the cell's quality assurance system then G58D would not work.

The results show the importance of delving deeply into molecular networks, said Stefan Maas, who oversees Serio's and other cellular signaling grants at the National Institutes of Health.

"These results are a great example of the power of system-level studies," Maas said. "By showing how two beneficial mutants cure the cell of prions, this study has revealed that small changes applied to distinct components of a molecular network can dramatically alter the outcome for the cell. These new insights may lead to new strategies for preventing or treating disorders that involve protein deposits."

But those strategies may require turning proteins into pills. Serio noted that while beneficial mutant prions confer resistance to prion infection in nature, they haven't been successful in reversing an established infection because sustained delivery into the body is too challenging. However, a small molecule drug mimic, if developed, could target infected tissues more effectively over a longer period to slow or perhaps even reverse disease progression.

In the paper the researchers conclude, "A system-based approach to prion intervention represents a potentially promising direction in which to explore future therapies."

Other authors on the paper include Brown researchers Aaron Derdowski and John Pezza.

David Orenstein | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine

23.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>