Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutant flies shed light on inherited intellectual disability

05.07.2011
Clumsy fruit flies with poor posture are helping an international team of scientists understand inherited intellectual disability in humans – and vice versa.

The flies can't hold their wings tightly against their bodies, and have trouble with flying and climbing behaviors, because they have mutations in a gene called dNab2. In humans, mutations in the same gene (with a clunkier name, ZC3H14) have been found to cause intellectual disability (ID) in studies of some Iranian families. ID describes the condition that was previously called mental retardation.

The protein encoded by Nab2/ZC3H14 appears to be part of a group of proteins, including the one disrupted in fragile X syndrome, that regulate brain cell function by binding RNA.

Cross-species comparisons of Nab2/ZC3H14's function are shedding light on how brain cells regulate genes by controlling the length of their RNA "tails." The results are published online in this week's Proceedings of the National Academy of Sciences Early Edition.

This unusual collaboration brought together investigators from Emory University School of Medicine in Atlanta, the Max Planck Institute for Molecular Genetics in Berlin and the University of Social Welfare and Rehabilitation Sciences in Tehran.

The paper's co-first authors are Emory graduate student Chang Hui Pak and Max Planck postdoc Masoud Garshasbi, with senior authors Andreas Kuss, PhD, group leader at the Max Planck Institute, and Anita Corbett, PhD, professor of biochemistry and Ken Moberg, PhD, assistant professor of cell biology at Emory University School of Medicine.

At Emory, Corbett had studied Nab2 in yeast since the 1990s. Her laboratory teamed up with Moberg to look at the function of the gene in fruit flies. Pak, a student in both Corbett's and Moberg's labs, generated flies with mutations in dNab2.

What made those flies easy to spot, next to regular flies, was that the mutant flies kept their wings stretched out. Healthy flies hold their wings folded together over their bodies. Several mutations that affect nerve or muscle development display this "wings held out" effect in flies, Moberg says.

"At this point, we didn't know if it was a problem with the muscles connected to the wings, or with the nerve networks that control those muscles," he says.

Unexpectedly, Corbett received an e-mail in 2009 providing a flash of insight. The Berlin/Tehran team had been studying families in Iran in which cousins marry, looking for genetic mutations that lead to intellectual disability.

"It has been more straightforward to find mutations that cause ID along the X chromosome, because they show up easily in boys – and they don't need to have inherit the defective genes from both parents," Moberg says. "Studying these families with blood-related parents is a way to explore new ground and learn more about genes on other chromosomes that can be linked to ID."

The Berlin/Tehran team had found that a mutation in the ZC3H14 gene showed up in two independent family trees affected by intellectual disability. Affected individuals can be male or female and have "non-syndromic" intellectual disability, meaning that they don't have altered anatomical development or other features such as autism.

The mutations in ZC3H14 in affected individuals don't completely wipe out production of the protein. This may be why the consequences of the human mutation aren't completely fatal. Puzzlingly, one form of the protein enriched in the brain is still there, but the forms of the protein found all over the body are gone.

"We suspect that the only reason these people are walking around is because that one isoform is still there," Moberg says.

The discovery of the fly/human link has led to a bundle of new questions. The protein Nab2/ZC3H14 binds "poly-A tails" (flags the cell puts on RNA molecules when they're ready to be decoded into protein). The protein restricts the length of the tails, which may be more important for some genes than others, Moberg says.

At Emory, scientists are studying the mutant flies to figure out more precisely what's wrong with them: which cells in the fly's brain are affected and what genes and processes go awry in these cells. Although the overall structure of the brain and nervous system in mutant flies looks OK, preliminary evidence suggests the mutation alters structures in the brain important for learning and memory. Collaborator Gary Bassell is collaborating with Corbett to engineer mice lacking the ZC3H14 gene.

"Although mice may better reflect the human situation, exploring the function of Nab2 in flies first allowed us to be quicker and nimbler in designing experiments," Moberg says.

The Berlin/Tehran team is now examining how common mutations in ZC3H14 are in population groups outside Iran, and whether it can account for other forms of intellectual disability.

The research was supported by the National Institutes of Health, the German Federal Ministry of Education and Research, the Max Planck Innovation Fund and the Iranian National Science Foundation.

Reference: CH Pak et al Mutation of the conserved polyadenosine RNA binding protein ZC3H14/dNab2, impairs neural function in Drosophila and humans. PNAS Early Edition (2011).

Writer: Quinn Eastman

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>