Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mutant champions save imperiled species from almost-certain extinction

Species facing widespread and rapid environmental changes can sometimes evolve quickly enough to dodge the extinction bullet. Populations of disease-causing bacteria evolve, for example, as doctors flood their “environment,” the human body, with antibiotics. Insects, animals and plants can make evolutionary adaptations in response to pesticides, heavy metals and overfishing.

Previous studies have shown that the more gradual the change, the better the chances for “evolutionary rescue” – the process of mutations occurring fast enough to allow a population to avoid extinction in changing environments. One obvious reason is that more individuals remain alive when change is gradual or moderate, meaning there are more opportunities for a winning mutation to emerge.

S Hammarlund/U of Washington

Tiny wells, each about the size of an eraser on the end of a pencil, hold individual populations of E. coli either evolving or succumbing to different levels of an antibiotic which has a red-orange hue.

Now University of Washington biologists using populations of microorganisms have shed light for the first time on a second reason. They found that the mutation that wins the race in the harshest environment is often dependent on a “relay team” of other mutations that came before, mutations that emerge only as conditions worsen at gradual and moderate rates.

Without the winners from those first “legs” of the survival race, it’s unlikely there will even be a runner in the anchor position when conditions become extreme.

“That’s a problem given the number of factors on the planet being changed with unprecedented rapidity under the banner of climate change and other human-caused changes,” said Benjamin Kerr, UW assistant professor of biology.

Kerr is corresponding author of a paper in the advance online edition of Nature the week of Feb. 9.

Unless a species can relocate or its members already have a bit of flexibility to alter their behavior or physiology, the only option is to evolve or die in the face of challenging environmental conditions, said lead author Haley Lindsey of Seattle, a former lab member. Other co-authors are Jenna Gallie, now with ETH Zurich, the Swiss Federal Institute of Technology, and Susan Taylor of Seattle.

The species studied was Escherichia coli, or E. coli, a bacterium commonly found in the lower intestine and harmless except for certain strains that cause food-poisoning sickness and death in humans. The UW researchers evolved hundreds of populations of E.coli under environments made ever more stressful by the addition of an antibiotic that cripples and kills the bacterium. The antibiotic was ramped up at gradual, moderate and rapid rates.

Mutations at known genes confer protection to the drug. Researchers examined these genes in surviving populations from gradual- and moderate-rate environments, and found multiple mutations.

Using genetic engineering, the scientists pulled out each mutation to see what protectiveness it provided on its own. They found some were only advantageous at the lower concentration of the drug and unable to save the population at the highest concentrations. But those mutations “predispose the lineage to gain other mutations that allow it to escape extinction at high stress,” the authors wrote.

“That two-step path leading to the double mutant is not available if a population is immersed abruptly into the high-concentration environment,” Kerr said. For populations in that situation, there were only single mutations that gave protection against the antibiotic.

“The rate of environmental deterioration can qualitatively affect evolutionary trajectories,” the authors wrote. “In our system, we find that rapid environmental change closes off paths that are accessible under gradual change.”

The work was funded by the National Science Foundation, including money through the consortium known as the Beacon Center for the Study of Evolution in Action, and UW Royalty Research Funds.

The findings have implications for those concerned about antibiotic-resistant organisms as well as those considering the effects of climate and global change, Kerr said. For instance, antibiotics found at very low concentrations in industrial and agricultural waste run-off might be evolutionarily priming bacterial populations to become drug resistant even at high doses.

As for populations threatened by human-caused climate change, “our study does suggest that there is genuine reason to worry about unusually high rates of environmental change,” the authors wrote. “As the rate of environmental deterioration increases, there can be pronounced increases in the rate of extinction.”
For more information:
Kerr, 206-221-3996, 206 221-7026,

Sandra Hines | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>