Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutant champions save imperiled species from almost-certain extinction

20.02.2013
Species facing widespread and rapid environmental changes can sometimes evolve quickly enough to dodge the extinction bullet. Populations of disease-causing bacteria evolve, for example, as doctors flood their “environment,” the human body, with antibiotics. Insects, animals and plants can make evolutionary adaptations in response to pesticides, heavy metals and overfishing.

Previous studies have shown that the more gradual the change, the better the chances for “evolutionary rescue” – the process of mutations occurring fast enough to allow a population to avoid extinction in changing environments. One obvious reason is that more individuals remain alive when change is gradual or moderate, meaning there are more opportunities for a winning mutation to emerge.


S Hammarlund/U of Washington

Tiny wells, each about the size of an eraser on the end of a pencil, hold individual populations of E. coli either evolving or succumbing to different levels of an antibiotic which has a red-orange hue.

Now University of Washington biologists using populations of microorganisms have shed light for the first time on a second reason. They found that the mutation that wins the race in the harshest environment is often dependent on a “relay team” of other mutations that came before, mutations that emerge only as conditions worsen at gradual and moderate rates.

Without the winners from those first “legs” of the survival race, it’s unlikely there will even be a runner in the anchor position when conditions become extreme.

“That’s a problem given the number of factors on the planet being changed with unprecedented rapidity under the banner of climate change and other human-caused changes,” said Benjamin Kerr, UW assistant professor of biology.

Kerr is corresponding author of a paper in the advance online edition of Nature the week of Feb. 9.

Unless a species can relocate or its members already have a bit of flexibility to alter their behavior or physiology, the only option is to evolve or die in the face of challenging environmental conditions, said lead author Haley Lindsey of Seattle, a former lab member. Other co-authors are Jenna Gallie, now with ETH Zurich, the Swiss Federal Institute of Technology, and Susan Taylor of Seattle.

The species studied was Escherichia coli, or E. coli, a bacterium commonly found in the lower intestine and harmless except for certain strains that cause food-poisoning sickness and death in humans. The UW researchers evolved hundreds of populations of E.coli under environments made ever more stressful by the addition of an antibiotic that cripples and kills the bacterium. The antibiotic was ramped up at gradual, moderate and rapid rates.

Mutations at known genes confer protection to the drug. Researchers examined these genes in surviving populations from gradual- and moderate-rate environments, and found multiple mutations.

Using genetic engineering, the scientists pulled out each mutation to see what protectiveness it provided on its own. They found some were only advantageous at the lower concentration of the drug and unable to save the population at the highest concentrations. But those mutations “predispose the lineage to gain other mutations that allow it to escape extinction at high stress,” the authors wrote.

“That two-step path leading to the double mutant is not available if a population is immersed abruptly into the high-concentration environment,” Kerr said. For populations in that situation, there were only single mutations that gave protection against the antibiotic.

“The rate of environmental deterioration can qualitatively affect evolutionary trajectories,” the authors wrote. “In our system, we find that rapid environmental change closes off paths that are accessible under gradual change.”

The work was funded by the National Science Foundation, including money through the consortium known as the Beacon Center for the Study of Evolution in Action, and UW Royalty Research Funds.

The findings have implications for those concerned about antibiotic-resistant organisms as well as those considering the effects of climate and global change, Kerr said. For instance, antibiotics found at very low concentrations in industrial and agricultural waste run-off might be evolutionarily priming bacterial populations to become drug resistant even at high doses.

As for populations threatened by human-caused climate change, “our study does suggest that there is genuine reason to worry about unusually high rates of environmental change,” the authors wrote. “As the rate of environmental deterioration increases, there can be pronounced increases in the rate of extinction.”
For more information:
Kerr, 206-221-3996, 206 221-7026, kerrb@uw.edu

Sandra Hines | EurekAlert!
Further information:
http://www.uw.edu
http://www.washington.edu/news/2013/02/19/mutant-champions-save-imperiled-species-from-almost-certain-extinction/

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>