Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cause of mussel poisoning identified

26.03.2009
The origin of the neurotoxin azaspiracid has finally been identified after a search for more than a decade.

The azaspiracid toxin group can cause severe poisoning in human consumers of mussels after being enriched in the shellfish tissues. The scientific periodical European Journal of Phycology reports in its current issue (Vol. 44/1: p. 63-79) that a tiny algal species, the dinoflagellate Azadinium spinosum, is responsible.

Researchers from the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association have isolated and described the hitherto unknown organism as a new genus and species of dinoflagellate. They successfully isolated the organism and multiplied it in pure laboratory cultures, subsequently identifying it as the producer of azaspiracid toxin.

Eating mussels is a special treat for many people, although it is not completely without danger. It has been known for a long time that consumption of mussels and other bivalve shellfish can cause poisoning in humans, with symptoms ranging from diarrhea, nausea, and vomiting to neurotoxicological effects, including paralysis and even death in extreme cases.

Although "shellfish poisoning" can also be caused by pathogenic viruses and bacteria, many cases are due to gastrointestinal toxins and/or neurotoxins produced by certain marine microscopic plankton, the so-called "toxic algae". Mussels can filter a high amount of these toxic microorganisms from the seawater column, and after ingestion they retain the toxins and accumulate them in their edible flesh.

Azaspiracids comprise one group of these microalgal toxins The first known azaspiracid poisonings occurred in the Netherlands in 1995 after consumption of mussels from Ireland. While the toxin itself has been quite well investigated, the question of the origin remained inconclusive until now despite intensive research. According to published investigations by Irish researchers, the dinoflagellate species Protoperidinium crassipes (previously regarded as harmless) has been blamed as the origin of the toxins since 2003.

Researchers from the Working Group on Ecological Chemistry, particularly the biologist Dr. Urban Tillmann and the chemist Dr. Bernd Krock from the Alfred Wegener Institute for Polar and Marine Research were able to show that Protoperidinium is only the vector and not the producer of the toxins, just like other voracious protozoa and mussels. They isolated a small alga from the North Sea off the Scottish east coast and described it as a new dinoflagellate species Azadinium spinosum while providing evidence of its azaspiracid production in the laboratory.

"We are able to produce so-called gene probes from our laboratory cultures with the help of molecular techniques", explains Tillmann. "These gene probes prove the existence of the toxin-producing algae in seawater samples and they offer an effective future early warning system for mussel farms", Tillmann continues. Apart from these applied aspects, the researchers are interested in quite fundamental questions: why does the alga produce these azaspiracid toxins and what are their ecological functions? The researchers have already planned the next expedition in order to further pursue these questions - they will head out into the North Sea with RV Heincke at the end of April 2009.

Ude Cieluch | EurekAlert!
Further information:
http://www.awi.de
http://www.helmholtz.de

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>