Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mussel Adhesive for DNA Chips

23.12.2010
Easy universal DNA immobilization on surfaces with a synthetic mussel polymer

Mussels are true masters of adhesion. Whether on the wood of a pier, the metal of a ship’s hull, rocks, or to their own kind, they stick to everything. Researchers led by Philip B. Messersmith at Northwestern University (Evanston, IL/USA) have successfully synthesized a mimic of one of the “universal adhesives” used by mussels.

As the scientists report in the journal AngewandteChemie, they were able to use their synthetic “mussel glue” to fix DNA molecules on various substrates. This new, simple method seems particularly promising for the production of DNA chips for diagnostics and research.

Modern analytical strategies for the detection and analysis of biomolecules are often based on robust and inexpensive methods for immobilizing DNA, proteins, and other biomolecules on surfaces. DNA microarray techniques involve the arrangement of different DNA probes on a single chip. Various target DNA molecules are selectively fished out of the many found in a DNA sample. The target DNA is identified by means of the binding location on the chip, because the location of every probe on the chip is documented.

“Previous anchoring strategies have generally been developed specifically for a single substrate,” says Messersmith, “they are thus ineffective on other substrates.” Messersmith and his colleagues have now developed a universal method—inspired by mussels—that can adhere to just about any material desired. Biopolymers responsible for the unusual adhesive properties of mussels have now been identified. These polymers are rich in catechol and amino groups. “We have synthesized a catecholamine polymer that mimics the chemistry of the musselproteins,” reports Messersmith.

The new approach is rather simple: Just place the desired substrate in a solution of the catecholamine polymer overnight. The polymer adheres as a thin layer on any of the usual substrates used for DNA arrays, such as glass, as well as less common substrates such as gold, platinum, oxides, semiconductors, or various polymer substrates. The coating then easily binds DNA molecules without influencing their biological activity. This makes it possible to make micropatterns with DNA (DNA spotting), as is required for DNA chips.

The secret of the success of the catecholamine polymer: it contains special groups of atoms that can bind to a diversity of substrate materials through a variety of mechanisms. On the other hand, target DNA molecules from a sample bind exclusively to the corresponding specific DNA probes, without requiring a treatment to block unspecific binding to the substrate. Says Messersmith: “The new coating strategy may significantly simplify DNA microarray technology.”

Author: Phillip B. Messersmith, Northwestern University, Evanston (USA), http://biomaterials.bme.northwestern.edu/people.asp

Title: Facile DNA Immobilization on Surfaces through Catecholamine Polymer

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201005001

Phillip B. Messersmith | Angewandte Chemie
Further information:
http://www.pressroom.angewandte.org

Further reports about: Angewandte Chemie DNA DNA chips DNA molecule

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>