Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Muscular dystrophy mystery solved; Mizzou scientist moves closer to MD solution

02.03.2009
Muscular dystrophy, which affects approximately 250,000 people in the United States, occurs when damaged muscle tissue is replaced with fibrous, bony or fatty tissue and loses function.

While scientists have identified one protein, dystrophin, as an important piece to curing the disease, another part of the mystery has eluded scientists for the past 14 years. Now, one University of Missouri scientist and his team have identified the location of the genetic material responsible for a molecular compound that is vital to curing the disease.

Duchenne muscular dystrophy (DMD), predominantly affecting males, is the most common type of muscular dystrophy. Patients with Duchenne muscular dystrophy have a gene mutation that disrupts the production of dystrophin. Absence of dystrophin starts a chain reaction that eventually leads to muscle cell degeneration and death. A previous study by Dongsheng Duan, associate professor of molecular microbiology and immunology, discovered a potential delivery method to replace the mutated genes with healthy genes. Following the replacement of these genes, Duan observed that dystrophin production was restarted in animals with muscular dystrophy.

However, while dystrophin is vital for muscle development, the protein also needs several "helpers" to maintain the muscle tissue. One of these "helper" molecular compounds is nNOS, which produces nitric oxide. This is important for muscles that are in use during high intensity movements, such as exercise.

"When you exercise, not only does the muscle contract, but the blood vessels are constricted," Duan said. "nNOS is important because it produces nitric oxide that relaxes the blood vessels, helping to maintain the muscle with a healthy blood supply. If no blood reaches the muscle cells, they will eventually die. In DMD patients, this means the disease will progress as the muscle cells are replaced by the fibrous, bony or fatty tissue."

Since 1994, researchers have known about the importance of nNOS, but have not been able to determine how to produce nNOS in a dystrophic muscle, or a muscle lacking dystrophin. Many scientists have tried to solve this mystery without success. In his most recent study, published Monday in The Journal of Clinical Investigation, Duan and his team identified the location of genetic material responsible for the production of nNOS.

Following the identification of the genetic material, Duan and his team created a series of new dystrophin genes. In their study, they used dystrophic mice to test the efficacy of these new genes. After genetically correcting the mice with the new dystrophin gene, Duan's team discovered that the missing nNOS was now restored in the dystrophic muscle. The mice that received the new gene did not experience muscle damage or fatigue following exercise.

"With this new discovery, we've solved a longstanding mystery of Duchenne Muscular Dystrophy," Duan said. "This will change the way we approach gene therapy for DMD patients in the future. With this study, we have finally found the genetic material that can fully restore all the functions required for correcting a dystrophic muscle and turning it into a normal muscle."

Christian Basi | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>