Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Muscular dystrophy mystery solved; Mizzou scientist moves closer to MD solution

02.03.2009
Muscular dystrophy, which affects approximately 250,000 people in the United States, occurs when damaged muscle tissue is replaced with fibrous, bony or fatty tissue and loses function.

While scientists have identified one protein, dystrophin, as an important piece to curing the disease, another part of the mystery has eluded scientists for the past 14 years. Now, one University of Missouri scientist and his team have identified the location of the genetic material responsible for a molecular compound that is vital to curing the disease.

Duchenne muscular dystrophy (DMD), predominantly affecting males, is the most common type of muscular dystrophy. Patients with Duchenne muscular dystrophy have a gene mutation that disrupts the production of dystrophin. Absence of dystrophin starts a chain reaction that eventually leads to muscle cell degeneration and death. A previous study by Dongsheng Duan, associate professor of molecular microbiology and immunology, discovered a potential delivery method to replace the mutated genes with healthy genes. Following the replacement of these genes, Duan observed that dystrophin production was restarted in animals with muscular dystrophy.

However, while dystrophin is vital for muscle development, the protein also needs several "helpers" to maintain the muscle tissue. One of these "helper" molecular compounds is nNOS, which produces nitric oxide. This is important for muscles that are in use during high intensity movements, such as exercise.

"When you exercise, not only does the muscle contract, but the blood vessels are constricted," Duan said. "nNOS is important because it produces nitric oxide that relaxes the blood vessels, helping to maintain the muscle with a healthy blood supply. If no blood reaches the muscle cells, they will eventually die. In DMD patients, this means the disease will progress as the muscle cells are replaced by the fibrous, bony or fatty tissue."

Since 1994, researchers have known about the importance of nNOS, but have not been able to determine how to produce nNOS in a dystrophic muscle, or a muscle lacking dystrophin. Many scientists have tried to solve this mystery without success. In his most recent study, published Monday in The Journal of Clinical Investigation, Duan and his team identified the location of genetic material responsible for the production of nNOS.

Following the identification of the genetic material, Duan and his team created a series of new dystrophin genes. In their study, they used dystrophic mice to test the efficacy of these new genes. After genetically correcting the mice with the new dystrophin gene, Duan's team discovered that the missing nNOS was now restored in the dystrophic muscle. The mice that received the new gene did not experience muscle damage or fatigue following exercise.

"With this new discovery, we've solved a longstanding mystery of Duchenne Muscular Dystrophy," Duan said. "This will change the way we approach gene therapy for DMD patients in the future. With this study, we have finally found the genetic material that can fully restore all the functions required for correcting a dystrophic muscle and turning it into a normal muscle."

Christian Basi | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>