Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How muscle develops: A dance of cellular skeletons

06.06.2011
Revealing another part of the story of muscle development, Johns Hopkins researchers have shown how the cytoskeleton from one muscle cell builds finger-like projections that invade into another muscle cell’s territory, eventually forcing the cells to combine.

Such muscle cell fusion, the researchers say, is not only important for understanding normal muscle growth, but also muscle regeneration after injury or disease. The work, they believe, could further development of therapies for muscular dystrophy or age-related muscle wasting.

Their report on muscle cell cytoskeletons, published in Developmental Cell May 17, adds detail to a previous study last year showing that actin — a main building block of the cell’s cytoskeleton — is required to form those finger-like projections and stimulate muscle cell merges. The new discovery outlines the intricate dance required among cytoskeleton-regulating proteins to precisely construct protrusions that promote muscle cell merging. Specifically, the Johns Hopkins team uncovered the activity of a regulatory protein known as “Blown Fuse,” aptly named because muscle cells lacking this protein fail to fuse.

“Blown Fuse was found to play a role in muscle cell fusion 14 years ago,” says Elizabeth Chen, Ph.D. assistant professor of molecular biology and genetics, “and now we know how Blown Fuse regulates the dynamics of the cytoskeleton to facilitate the invasion of one muscle cell by another.”

In a test tube, the researchers showed that the protein, Blown Fuse, disrupts the complex formed by the protein duo WASP and WIP, which are known regulators of the actin cytoskeleton. “Blown Fuse does so by a competitive binding mechanism — it binds to the same site in WIP as WASP does,” says Rui Duan, a postdoctoral fellow in Chen’s lab and a co-first author of the study.

The researchers knew that the WASP-WIP protein duo binds to the growing ends of actin filaments, protecting these ends from being capped by proteins that prevent further actin growth. Apart from its protective role, WASP also has to come off the end of the actin filaments from time to time to start new actin branches. The intricate balance between actin filament growth, capping and branching, determines the dynamics of the cytoskeleton. Armed with this knowledge, the researchers tested whether Blown Fuse competes with this process to change how WASP simultaneously protects and builds the cytoskeleton.

The test began with researchers putting fluorescent actin in fruit fly muscle cells that incorporated themselves into the growing actin branches in the finger-like protrusions. Then, the researchers used a laser beam to bleach the fluorescent actin in the region of the finger-like protrusions and waited to see whether and how long it would take for new, unbleached actin to spread from other parts of the cell and be taken up by the growing branches in the “fingers.” In normal muscle cells, it took about two minutes for the fluorescence to return. In muscle cells that lacked Blown Fuse, the fluorescence never fully recovered and the cytoskeleton failed to project finger-like protrusions, probably because the WASP-WIP complex does not come off the ends of the actin filaments to start new actin branches.

“These results suggest that the growing ends of the actin cytoskeleton are occupied by the WASP-WIP protein duo and that without Blown Fuse to dissociate with the WASP-WIP complex and push WASP off the ends, new actin branches cannot be started,” says Chen. “And these shorter and stiffer new branches are critical for generating the finger-like membrane protrusions.”

Through a microscope, the Hopkins team compared the finger-like projections from normal cells with cells lacking Blown Fuse. Normal muscle cells form pointy finger-like protrusions that push into the other muscle cell, but cells without Blown Fuse have fewer and floppier protrusions that don’t push their way in to other muscle cells.

“Modulating the stability of the WASP-WIP complex may represent a general mechanism in regulating cytoskeleton dynamics and generating membrane protrusions,” says Chen.

The study was funded by grants from the National Institutes of Health, the American Heart Association and the Muscular Dystrophy Association.

Other authors of the report are Peng Jin, Rui Duan, Fengbao Luo and Sabrina Hong of the Johns Hopkins University School of Medicine and Guofeng Zhang of the National Institute of Biomedical Imaging and Bioengineering.

Vanessa McMains | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>