Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How muscle develops: A dance of cellular skeletons

06.06.2011
Revealing another part of the story of muscle development, Johns Hopkins researchers have shown how the cytoskeleton from one muscle cell builds finger-like projections that invade into another muscle cell’s territory, eventually forcing the cells to combine.

Such muscle cell fusion, the researchers say, is not only important for understanding normal muscle growth, but also muscle regeneration after injury or disease. The work, they believe, could further development of therapies for muscular dystrophy or age-related muscle wasting.

Their report on muscle cell cytoskeletons, published in Developmental Cell May 17, adds detail to a previous study last year showing that actin — a main building block of the cell’s cytoskeleton — is required to form those finger-like projections and stimulate muscle cell merges. The new discovery outlines the intricate dance required among cytoskeleton-regulating proteins to precisely construct protrusions that promote muscle cell merging. Specifically, the Johns Hopkins team uncovered the activity of a regulatory protein known as “Blown Fuse,” aptly named because muscle cells lacking this protein fail to fuse.

“Blown Fuse was found to play a role in muscle cell fusion 14 years ago,” says Elizabeth Chen, Ph.D. assistant professor of molecular biology and genetics, “and now we know how Blown Fuse regulates the dynamics of the cytoskeleton to facilitate the invasion of one muscle cell by another.”

In a test tube, the researchers showed that the protein, Blown Fuse, disrupts the complex formed by the protein duo WASP and WIP, which are known regulators of the actin cytoskeleton. “Blown Fuse does so by a competitive binding mechanism — it binds to the same site in WIP as WASP does,” says Rui Duan, a postdoctoral fellow in Chen’s lab and a co-first author of the study.

The researchers knew that the WASP-WIP protein duo binds to the growing ends of actin filaments, protecting these ends from being capped by proteins that prevent further actin growth. Apart from its protective role, WASP also has to come off the end of the actin filaments from time to time to start new actin branches. The intricate balance between actin filament growth, capping and branching, determines the dynamics of the cytoskeleton. Armed with this knowledge, the researchers tested whether Blown Fuse competes with this process to change how WASP simultaneously protects and builds the cytoskeleton.

The test began with researchers putting fluorescent actin in fruit fly muscle cells that incorporated themselves into the growing actin branches in the finger-like protrusions. Then, the researchers used a laser beam to bleach the fluorescent actin in the region of the finger-like protrusions and waited to see whether and how long it would take for new, unbleached actin to spread from other parts of the cell and be taken up by the growing branches in the “fingers.” In normal muscle cells, it took about two minutes for the fluorescence to return. In muscle cells that lacked Blown Fuse, the fluorescence never fully recovered and the cytoskeleton failed to project finger-like protrusions, probably because the WASP-WIP complex does not come off the ends of the actin filaments to start new actin branches.

“These results suggest that the growing ends of the actin cytoskeleton are occupied by the WASP-WIP protein duo and that without Blown Fuse to dissociate with the WASP-WIP complex and push WASP off the ends, new actin branches cannot be started,” says Chen. “And these shorter and stiffer new branches are critical for generating the finger-like membrane protrusions.”

Through a microscope, the Hopkins team compared the finger-like projections from normal cells with cells lacking Blown Fuse. Normal muscle cells form pointy finger-like protrusions that push into the other muscle cell, but cells without Blown Fuse have fewer and floppier protrusions that don’t push their way in to other muscle cells.

“Modulating the stability of the WASP-WIP complex may represent a general mechanism in regulating cytoskeleton dynamics and generating membrane protrusions,” says Chen.

The study was funded by grants from the National Institutes of Health, the American Heart Association and the Muscular Dystrophy Association.

Other authors of the report are Peng Jin, Rui Duan, Fengbao Luo and Sabrina Hong of the Johns Hopkins University School of Medicine and Guofeng Zhang of the National Institute of Biomedical Imaging and Bioengineering.

Vanessa McMains | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>