Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New look at multitalented protein sheds light on mysteries of HIV

15.10.2010
New insights into the human immunodeficiency virus (HIV) infection process, which leads to acquired immunodeficiency syndrome (AIDS), may now be possible through a research method recently developed in part at the National Institute of Standards and Technology (NIST), where scientists have glimpsed an important protein molecule's behavior with unprecedented clarity.

The HIV protein, known as Gag, plays several critical roles in the assembly of the human immunodeficiency virus in a host cell, but persistent difficulties with imaging Gag in a lab setting have stymied researchers' efforts to study how it functions.

"A better understanding of Gag's behavior might allow researchers to develop antiviral drugs that target the HIV assembly process, which remains unassailed by medical science," says Hirsh Nanda, a postdoctoral researcher at the NIST Center for Neutron Research (NCNR) and a member of the multi-institutional research team. "Our method might reveal how to inhibit new viruses as they grow."

The Gag molecule is a microscopic gymnast. At different stages during HIV assembly, the protein twists itself into several different shapes inside a host cell. One shape, or conformation, helps it to drag a piece of HIV genetic material toward the cell membrane, where the viral particles grow. Gag's opposite end becomes anchored there, stretching the protein into a rod-like conformation that eventually helps form a barrier surrounding the infectious genes in the finished virus. But while scientists have been aware for years that Gag appears to play several roles in HIV assembly, the specifics have remained mysterious.

... more about:
»HIV »NCNR »NIST »cell membrane »organic molecule

The research team potentially solved this problem by creating an artificial cell membrane where Gag can show off its gymnastic prowess for the neutron probes at the NCNR. The center includes a variety of instruments specifically designed to observe large organic molecules like proteins.

"We were able to mimic the different stages of the virus's development, and look at what Gag's conformation was at these various stages," Nanda says. "We saw conformations that had never been seen before."

Nanda describes the team's first paper* on the subject as an important first step in describing their observational method, which was a joint effort between NIST, the National Cancer Institute and Carnegie-Mellon University. They plan another paper detailing what the method has revealed about HIV.

"Our efforts have not yet shown us how many steps are involved in Gag's work assembling an HIV particle, but at least we can see what it looks like in each major interaction that likely occurs in the cell during assembly," Nanda says. "It may allow us to characterize them for the first time."

Nanda says that their technique will also allow scientists to examine large classes of membrane proteins, which like Gag are notoriously hard to examine.

*H. Nanda, S.A.K. Datta, F. Heinrich, M. Lösche, A. Rein, S. Krueger, J.E. Curtis. Electrostatic interactions and binding orientation of HIV-1 matrix, studied by neutron reflectivity. Biophysical Journal, Vol. 99 (8), Oct. 20, 2010.

Chad Boutin | EurekAlert!
Further information:
http://www.nist.gov

Further reports about: HIV NCNR NIST cell membrane organic molecule

More articles from Life Sciences:

nachricht Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?
26.05.2017 | Paul-Ehrlich-Institut - Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>