Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multistage nanovector system provides sustained delivery of siRNA cancer therapeutic in mice

06.05.2010
New research by scientists at The University of Texas Health Science Center at Houston (UTHealth) and The University of Texas M. D. Anderson Cancer Center could make it easier for patients to use a family of promising experimental cancer therapeutics known as small interfering RNA (siRNA).

siRNA is a part of an innovative strategy to disrupt the activity of cancer-related genes that has broad applications to other diseases.

In the May 1 issue of Cancer Research, the scientists reported that a multistage nanovector system for the delivery of siRNA significantly lengthened the therapeutic effects of the treatment in two independent mouse models of advanced ovarian cancer.

The researchers reported that a single intravenous dose of siRNA targeting the EphA2 oncoprotein provided the same tumor shrinkage for three weeks as that now achieved by six doses over the same period.

“The multistage delivery system is revolutionary in that it allows the therapeutic payloads to cross the biological barriers in the body and reach their target. It further helps release agents over long periods of time directly into the bloodstream, which is unprecedented,” said Mauro Ferrari, Ph.D., chairman of the Department of NanoMedicine and Biomedical Engineering at The University of Texas Medical School at Houston, which is part of UTHealth. “We are very excited about the results of this paper, since it provides the first validation of the therapeutic advantages of the multistage delivery system in animal models of cancer.”

The multistage nanovector system is composed of nanoporous silicon carrier particles that are about 100 times smaller than a strand of hair, which can be loaded with tiny bubbles of fat called nanoliposomes containing siRNA. The system provides for the release of the nanoliposomes and their contents.

“This is an exciting development because RNA interference has worked well in an animal model but has such a short half-life that it requires frequent delivery. A three-week dosing period is much closer to the sustained dosing needed to properly test this therapy in clinical trials,” said Anil Sood, M.D., professor in M.D. Anderson’s Departments of Gynecological Oncology and Cancer Biology.

The multistage nanovector system was developed in Ferrari’s laboratory and the liposomal siRNA was developed at M. D. Anderson.

“We have provided the first in vivo therapeutic validation of a novel, multistage siRNA delivery system for sustained gene silencing with broad applicability to pathologies,” wrote Takemi Tanaka, Ph.D., a co-first author and a research assistant professor of nanomedicine and biomedical engineering at the UT Medical School at Houston, and the other investigators in the paper..

Gabriel Lopez-Berestein, M.D., professor of experimental therapeutics at M. D. Anderson, Sood, co-director of M. D. Anderson’s Center for RNA Interference and Non-Coding RNA, and Ferrari are the senior authors.

“EphA2 is an important target because it’s overexpressed in 70 percent of ovarian cancers and is strongly associated with poor survival and a higher likelihood of advanced or metastatic disease,” said Lopez-Berestein. “It’s also overexpressed in melanoma, breast and lung cancers with the same poor prospects for patients.”

The protein is not present in normal tissue and cannot be attacked using more traditional drug approaches.

Study contributors from UTHealth include: René Nieves-Alicea, Ph.D.; Aman Preet Singh Mann, Xuewu Liu, Ph.D.; Rohan Bhavane, Jianhua Gu, Jean Fakhoury and Biana Godin, Ph.D.

M. D. Anderson contributors include: Lingegowda S. Mangala, Ph.D., co-first author; Edna Mora, M.D.; Hee-Dong Han, Pablo E. Vivas-Mejia, Ph.D.; Mian M.K. Shahzad, Chunhua Lu, Koji Matsuo, Rebecca Stone, M.D.; and Alpa Nick, M.D.

Ciro Chiappini, a graduate research assistant at The University of Texas at Austin, also contributed to the study.

The study, which is titled “Sustained Small Interfering RNA Delivery by Mesoporous Silicon Particles,” received support from the Department of Defense, the State of Texas Emerging Technology Fund, National Aeronautics and Space Administration, the Ovarian Cancer Research Fund Program Project Development Grant, The University of Texas M.D. Anderson Cancer Center Ovarian Cancer Specialized Program of Research Excellence, the National Institutes of Health, the Zarrow Foundation, the Betty Ann Asche Murray Distinguished Professorship, the Baylor WRHR Grant and the GCF Molly-Cade Ovarian Cancer Research Grant and the Alliance for NanoHealth.

Ferrari serves as a professor of experimental therapeutics at the M. D. Anderson Cancer Center, adjunct professor of bioengineering at Rice University, adjunct professor of biochemistry and molecular biology at The University of Texas Medical Branch at Galveston, adjunct professor of engineering at the University of Houston, and president of the Alliance for NanoHealth.

Rob Cahill
Media Hotline: 713-500-3030

Robert Cahill | EurekAlert!
Further information:
http://www.uth.tmc.edu

Further reports about: Cancer Medical Wellness Multistage RNA Texas UTHealth health services mouse model ovarian ovarian cancer

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Novel chip-based gene expression tool analyzes RNA quickly and accurately

18.01.2018 | Medical Engineering

Scientists on the road to discovering impact of urban road dust

18.01.2018 | Ecology, The Environment and Conservation

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>