Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Multiple sclerosis: T cells as serial killers

In multiple sclerosis, the immune system also damages the nerve cells with its misguided activities.

This is what regularly happens in the targeted immunological attack on the myelin sheaths of the nerve cells, as shown experimentally for the first time by researchers from Würzburg and Zürich.

Living tissue from the cerebral cortex of mice: Nerve cells are shown in green, their nuclei in blue. If you add T cells specialized in destroying myelin-generating cells, significant amounts of nerve cells also die off within six hours. They are displayed in red or yellow in the picture. The arrows point to the dead nerve cells. Picture: Heinz Wiendl

Inflammations in the central nervous system can be triggered by viruses or by the immune system. The latter is the case in multiple sclerosis. With drastic consequences: The cells responsible for building and maintaining an insulating sheath around the nerve fibers die off. The sheaths degenerate as well and often even the nerve cells are destroyed eventually.

"In the example of multiple sclerosis, not only the loss of the myelin sheaths but particularly the death of the nerve cells is thought to be decisive for the permanent disabilities that many patients have to deal with," says Professor Heinz Wiendl at the Department of Neurology of the University of Würzburg. Such disabilities include paralysis or impaired vision.

Now, for the first time, two study groups have simultaneously shown that certain T cells of the immune system not only directly affect the myelin-generating cells but also cause "collateral damage" to the nerve cells or their extensions. The research has been published in the journals Glia and American Journal of Pathology.

T cells: Indirect effect causes nerve cells to die

Wiendl's team at the Department of Neurology of the University of Würzburg was able to demonstrate this with brain tissue cultures: T cells exclusively targeting a specific structure on the surface of the myelin-generating cells also caused a significant loss of nerve cells within just a few hours. How this indirect effect might be accounted for is explained by Würzburg researcher Sven Meuth: "Possibly, the T cells release some soluble factors, such as perforin or granzyme B, which in turn migrate to and damage the nerve cells."

Serial murder: Each T cell strikes many times

The aggressive T cells act just like serial killers: "Every single one of them can kill off up to 30 myelin-generating cells and - at the same time - destroy up to ten nerve cells," says Heinz Wiendl.

These T cells virtually cut through the extensions of the nerve cells. This has been established by the team headed by Professor Norbert Goebels of the University of Zürich (now Düsseldorf) in a similar experimental approach by means of video analysis.

Possible target for new therapies

"These results help us to better understand the development of acute and chronic damage in inflammations of the central nervous system," explains Professor Wiendl. In future, the patients might also benefit from the findings - after all, the aggressive T cells are an attractive target for new therapies. Therefore, the Würzburg scientists are eager to find out as much as possible about these serial killers.

Multiple sclerosis: about the disease

Globally, approximately 2.5 million people are affected by multiple sclerosis; in Germany, there are about 122,000 patients according to current estimates. Here, approximately 2,500 new cases of the disease are diagnosed per year. Women aquire the disease almost twice as often as men.

In MS patients, the immune system mistakenly attacks the components of the nervous system, most prominently the nerve sheaths eventually destructing neural cells. Most often, the onset of the disease starts in early adulthood with relapsing remitting neurological symptoms. Initially people affected perceive tingling sensations in arms and legs, have walking disturbances or encounter visual problems. In the course of disease patients often acquire permanent disability. Some of them need a wheel-chair at later stages.

At the moment, there is no cure for multiple sclerosis; however, medical treatment can alleviate the symptoms of the patients and improve their quality of life. The Department of Neurology in Würzburg accommodates more than 2000 MS patients.


Prof. Dr. Heinz Wiendl, Department of Neurology of the University of Würzburg, T ++ 49 (931) 201-23755 or ++ 49 (931)201-23756,

Prof. Dr. Norbert Goebels, Department of Neurology of the University of Düsseldorf,

"Collateral neuronal apoptosis in CNS gray matter during an oligodendrocyte-directed CD8(+) T cell attack", Göbel K, Melzer N, Herrmann AM, Schuhmann MK, Bittner S, Ip CW, Hünig T, Meuth SG, Wiendl H, Glia 2009, online publiziert am 24. September

"Collateral bystander damage by myelin-directed CD8+ T cells causes axonal loss", Sobottka B, Harrer MD, Ziegler U, Fischer K, Wiendl H, Hünig T, Becher B, Goebels N, American Journal of Pathology 2009; 175(3):1160-6, online publiziert am 21. August

"CD8+ T cells and neuronal damage: direct and collateral mechanisms of cytotoxicity and impaired electrical excitability", Melzer N, Meuth SG, Wiendl H, FASEB Journal 2009, online publiziert am 30. Juni

Robert Emmerich | idw
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>