Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiple sclerosis: T cells as serial killers

14.10.2009
In multiple sclerosis, the immune system also damages the nerve cells with its misguided activities.

This is what regularly happens in the targeted immunological attack on the myelin sheaths of the nerve cells, as shown experimentally for the first time by researchers from Würzburg and Zürich.


Living tissue from the cerebral cortex of mice: Nerve cells are shown in green, their nuclei in blue. If you add T cells specialized in destroying myelin-generating cells, significant amounts of nerve cells also die off within six hours. They are displayed in red or yellow in the picture. The arrows point to the dead nerve cells. Picture: Heinz Wiendl

Inflammations in the central nervous system can be triggered by viruses or by the immune system. The latter is the case in multiple sclerosis. With drastic consequences: The cells responsible for building and maintaining an insulating sheath around the nerve fibers die off. The sheaths degenerate as well and often even the nerve cells are destroyed eventually.

"In the example of multiple sclerosis, not only the loss of the myelin sheaths but particularly the death of the nerve cells is thought to be decisive for the permanent disabilities that many patients have to deal with," says Professor Heinz Wiendl at the Department of Neurology of the University of Würzburg. Such disabilities include paralysis or impaired vision.

Now, for the first time, two study groups have simultaneously shown that certain T cells of the immune system not only directly affect the myelin-generating cells but also cause "collateral damage" to the nerve cells or their extensions. The research has been published in the journals Glia and American Journal of Pathology.

T cells: Indirect effect causes nerve cells to die

Wiendl's team at the Department of Neurology of the University of Würzburg was able to demonstrate this with brain tissue cultures: T cells exclusively targeting a specific structure on the surface of the myelin-generating cells also caused a significant loss of nerve cells within just a few hours. How this indirect effect might be accounted for is explained by Würzburg researcher Sven Meuth: "Possibly, the T cells release some soluble factors, such as perforin or granzyme B, which in turn migrate to and damage the nerve cells."

Serial murder: Each T cell strikes many times

The aggressive T cells act just like serial killers: "Every single one of them can kill off up to 30 myelin-generating cells and - at the same time - destroy up to ten nerve cells," says Heinz Wiendl.

These T cells virtually cut through the extensions of the nerve cells. This has been established by the team headed by Professor Norbert Goebels of the University of Zürich (now Düsseldorf) in a similar experimental approach by means of video analysis.

Possible target for new therapies

"These results help us to better understand the development of acute and chronic damage in inflammations of the central nervous system," explains Professor Wiendl. In future, the patients might also benefit from the findings - after all, the aggressive T cells are an attractive target for new therapies. Therefore, the Würzburg scientists are eager to find out as much as possible about these serial killers.

Multiple sclerosis: about the disease

Globally, approximately 2.5 million people are affected by multiple sclerosis; in Germany, there are about 122,000 patients according to current estimates. Here, approximately 2,500 new cases of the disease are diagnosed per year. Women aquire the disease almost twice as often as men.

In MS patients, the immune system mistakenly attacks the components of the nervous system, most prominently the nerve sheaths eventually destructing neural cells. Most often, the onset of the disease starts in early adulthood with relapsing remitting neurological symptoms. Initially people affected perceive tingling sensations in arms and legs, have walking disturbances or encounter visual problems. In the course of disease patients often acquire permanent disability. Some of them need a wheel-chair at later stages.

At the moment, there is no cure for multiple sclerosis; however, medical treatment can alleviate the symptoms of the patients and improve their quality of life. The Department of Neurology in Würzburg accommodates more than 2000 MS patients.

Contact

Prof. Dr. Heinz Wiendl, Department of Neurology of the University of Würzburg, T ++ 49 (931) 201-23755 or ++ 49 (931)201-23756, heinz.wiendl@klinik.uni-wuerzburg.de

Prof. Dr. Norbert Goebels, Department of Neurology of the University of Düsseldorf, norbert.goebels@uni-duesseldorf.de

"Collateral neuronal apoptosis in CNS gray matter during an oligodendrocyte-directed CD8(+) T cell attack", Göbel K, Melzer N, Herrmann AM, Schuhmann MK, Bittner S, Ip CW, Hünig T, Meuth SG, Wiendl H, Glia 2009, online publiziert am 24. September

"Collateral bystander damage by myelin-directed CD8+ T cells causes axonal loss", Sobottka B, Harrer MD, Ziegler U, Fischer K, Wiendl H, Hünig T, Becher B, Goebels N, American Journal of Pathology 2009; 175(3):1160-6, online publiziert am 21. August

"CD8+ T cells and neuronal damage: direct and collateral mechanisms of cytotoxicity and impaired electrical excitability", Melzer N, Meuth SG, Wiendl H, FASEB Journal 2009, online publiziert am 30. Juni

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de/

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>