Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiple route bone marrow stem cell injections show promise to treat spinal cord injury

16.03.2009
Researchers from DaVinci Biosciences, Costa Mesa, California, in collaboration with Hospital Luis Vernaza in Ecuador, have determined that injecting a patient's own bone marrow-derived stem cells (autologous BMCs) directly into the spinal column using multiple routes can be an effective treatment for spinal cord injury (SCI) that returns some quality of life for SCI patients without serious adverse events.

Publishing in the current issue of Cell Transplantation (Vol. 17 No.12), the researchers reported on eight patients with SCI (four acute and four chronic) to whom they administered BMCs directly into the spinal column, spinal canal and intravenously for each patient and followed for two years using MRI imaging to assess morphological changes in the spinal cord.

"Our objective in this study was to demonstrate that multiple route administration of BMCs for SCI is safe and feasible," said corresponding author Dr. Francisco Silva. "To date, we have administered BMCs into 52 patients with SCI and have had no tumor formations, no cases of infection or increased pain, and few instances of minor adverse events. We also found that patient quality of life improved."

According to Dr. Silva, presently there is no cure or effective treatment for spinal cord injury, a disorder affecting millions globally. Tissue loss from the primary injury and the complexity of cell types required for functional recovery lead the list of considerations. Once more, to be considered successful, any treatment should ultimately help to improve patient quality of life and demonstrate functional improvements.

"Autologous stem cell transplantation of BMCs can promote the growth of blood vessels and, therefore, represent an alternative therapy," said Dr. Silva.

Following primary trauma to the adult spinal cord there is evidence of hemorrhage and blood flow is attenuated, he explained. The disruption of blood flow leads to spinal cord infarction, the disruption of the blood-spinal cord injury barrier, swelling and the release of molecules influencing spinal cord perfusion and ischemia, a restriction in blood supply.

"BMCs are well known for their ability to grow blood vessels," explained Dr. Silva. "This angiogenesis is necessary for wound healing and establishing a growth permissive environment. We hypothesized that improved blood flow and oxygen supply could contribute to functional improvements for SCI transplanted with autologous BMCs."

In eight patients who received BMC transplants through various routes and followed for two years, the scientists reported several functional improvements, perhaps the most important of which was improved bladder control.

Finally, the researchers noted that one of their cases suffered a gunshot wound and that their study marked the first time a gunshot wound victim had received BMC transplants through multiple routes.

"It is important to note," concluded Dr. Silva," that all of our patients with acute injuries improved significantly with no signs of deterioration or impediment of presumed spontaneous recovery."

According to Dr. Svitlana Garbuzova-Davis, a spinal cord researcher at the University of South Florida, the study highlights the value of using several different simultaneous routes for the administration of stem cells, as well as the benefit of the cells themselves.

"While it would be interesting to know the respective contribution of each route of administration, this study does appear to support the need to move to carry out double blind clinical trials of BMCs in SCI, especially if a non-invasive route could be used."

Dr. Francisco Silva | EurekAlert!
Further information:
http://www.dvbiosciences.com

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>