Multiple axons and actions with PSD-95

Nitric oxide gets neurons together. And it seems to do it backward. Work by Nikonenko et al. suggests that a protein called PSD-95 prompts nitric oxide release from postsynaptic dendritic spines, prompting nearby presynaptic axons to lock on, and develop new synapses. The study will appear in the December 15, 2008 issue of The Journal of Cell Biology (JCB).

It is becoming increasingly clear that synaptogenesis is not solely axon driven. PSD-95 is a major component of postsynaptic densities—a conglomeration of scaffolding proteins, neurotransmitter receptors, and signaling proteins that are thought to shape dendritic spines—and reduced levels of PSD-95 impair synapse development. How PSD-95 works, however, was unknown.

Nikonenko et al. overexpressed PSD-95 in cultured hippocampal neurons and found that the cells' dendritic spines grew two to three times their normal size and were often contacted by multiple axons—a rare occurrence in the adult brain. By mutating different parts of PSD-95, the team discovered that the region responsible for prompting multi-axon connections was also required for binding nitrogen oxide synthase. The team cut to the chase, bathed neurons in nitric oxide, and showed this was sufficient to promote the extra axon connections. Since bathing cells in nitric oxide and overexpressing proteins do not reflect normal physiological conditions, the team also inhibited nitric oxide synthase in wild-type neurons and confirmed that synapse density was reduced.

Overexpressing PSD-95 increased the amount of nitric oxide synthase at postsynaptic densities, suggesting PSD-95 recruits the synthase to its required locale. Interestingly, PSD-95 that lacked its synthase interaction domain still induced super-sized dendritic spines, suggesting PSD-95 wears more than one hat at the synapse construction site.

Media Contact

Rita Sullivan EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Innovative microscopy demystifies metabolism of Alzheimer’s

Researchers at UC San Diego have deployed state-of-the art imaging techniques to discover the metabolism driving Alzheimer’s disease; results suggest new treatment strategies. Alzheimer’s disease causes significant problems with memory,…

A cause of immunodeficiency identified

After stroke and heart attack: Every year, between 250,000 and 300,000 people in Germany suffer from a stroke or heart attack. These patients suffer immune disturbances and are very frequently…

Partners & Sponsors