Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multifunctional polymer neutralizes both biological and chemical weapons

19.03.2010
In an ongoing effort to mirror the ability of biological tissues to respond rapidly and appropriately to changing environments, scientists from the McGowan Institute for Regenerative Medicine have synthesized a single, multifunctional polymer material that can decontaminate both biological and chemical toxins. They described the findings recently in Biomaterials.

"Our lab applies biological principles to create materials that can do many things, just like our skin protects us from both rain and sun," said senior investigator Alan Russell, Ph.D., University Professor of Surgery, University of Pittsburgh School of Medicine, and director, McGowan Institute, a joint effort of the university and UPMC. "Typically, labs engineer products that are designed to serve only one narrow function."

Those conventional approaches might not provide the best responses for weapons of mass destruction, which could be biological, such as smallpox virus, or chemical, such as the nerve agent sarin, he noted. Terrorists aren't going to announce what kind of threat they unleash in an attack.

"That uncertainty calls for a single broad-spectrum decontamination material that can rapidly neutralize both kinds of threats and is easily delivered or administered, and it must not damage the environment where it is applied," Dr. Russell said. "Much work has gone into developing ways to thwart either germ or chemical weapons, and now we're combining some of them into one countermeasure."

He and his team have devised a polyurethane fiber mesh containing enzymes that lead to the production of bromine or iodine, which kill bacteria, as well as chemicals that generate compounds that detoxify organophosphate nerve agents.

"This mesh could be developed into sponges, coatings or liquid sprays, and it could be used internally or as a wound dressing that is capable of killing bacteria, viruses and spores," said lead investigator Gabi Amitai, Ph.D., of the McGowan Institute and the Israel Institute for Biological Research. "The antibacterial and antitoxin activities do not interfere with each other, and actually can work synergistically."

In their experiments, the material fended off Staph aureus and E. coli, which represent different classes of bacteria. After 24 hours, it restored 70 percent of the activity of acetylcholinesterase, an enzyme that is inhibited by nerve agents leading to fatal dysfunction of an essential neurotransmitter.

The researchers continue to develop alternate decontamination strategies to address chemical and biologic weapons.

Co-authors of the paper include Hironobu Murata, Ph.D., and senior research technician Jill Andersen, both of the McGowan Institute; and Richard Koepsel, Ph.D., of the McGowan Institute and the Department of Surgery, University of Pittsburgh School of Medicine.

The study was funded by a grant from the Commonwealth of Pennsylvania.

About the McGowan Institute for Regenerative Medicine

The McGowan Institute for Regenerative Medicine was established by the University of Pittsburgh School of Medicine and its clinical partner, UPMC, to realize the vast potential of tissue engineering and other techniques aimed at repairing damaged or diseased tissues and organs. The McGowan Institute serves as a single base of operations for the university's leading scientists and clinical faculty working to develop tissue engineering, cellular therapies, biosurgery and artificial and biohybrid organ devices.

Anita Srikameswaran | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

nachricht Party discipline for jumping genes
22.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>