Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multifunctional polymer neutralizes both biological and chemical weapons

19.03.2010
In an ongoing effort to mirror the ability of biological tissues to respond rapidly and appropriately to changing environments, scientists from the McGowan Institute for Regenerative Medicine have synthesized a single, multifunctional polymer material that can decontaminate both biological and chemical toxins. They described the findings recently in Biomaterials.

"Our lab applies biological principles to create materials that can do many things, just like our skin protects us from both rain and sun," said senior investigator Alan Russell, Ph.D., University Professor of Surgery, University of Pittsburgh School of Medicine, and director, McGowan Institute, a joint effort of the university and UPMC. "Typically, labs engineer products that are designed to serve only one narrow function."

Those conventional approaches might not provide the best responses for weapons of mass destruction, which could be biological, such as smallpox virus, or chemical, such as the nerve agent sarin, he noted. Terrorists aren't going to announce what kind of threat they unleash in an attack.

"That uncertainty calls for a single broad-spectrum decontamination material that can rapidly neutralize both kinds of threats and is easily delivered or administered, and it must not damage the environment where it is applied," Dr. Russell said. "Much work has gone into developing ways to thwart either germ or chemical weapons, and now we're combining some of them into one countermeasure."

He and his team have devised a polyurethane fiber mesh containing enzymes that lead to the production of bromine or iodine, which kill bacteria, as well as chemicals that generate compounds that detoxify organophosphate nerve agents.

"This mesh could be developed into sponges, coatings or liquid sprays, and it could be used internally or as a wound dressing that is capable of killing bacteria, viruses and spores," said lead investigator Gabi Amitai, Ph.D., of the McGowan Institute and the Israel Institute for Biological Research. "The antibacterial and antitoxin activities do not interfere with each other, and actually can work synergistically."

In their experiments, the material fended off Staph aureus and E. coli, which represent different classes of bacteria. After 24 hours, it restored 70 percent of the activity of acetylcholinesterase, an enzyme that is inhibited by nerve agents leading to fatal dysfunction of an essential neurotransmitter.

The researchers continue to develop alternate decontamination strategies to address chemical and biologic weapons.

Co-authors of the paper include Hironobu Murata, Ph.D., and senior research technician Jill Andersen, both of the McGowan Institute; and Richard Koepsel, Ph.D., of the McGowan Institute and the Department of Surgery, University of Pittsburgh School of Medicine.

The study was funded by a grant from the Commonwealth of Pennsylvania.

About the McGowan Institute for Regenerative Medicine

The McGowan Institute for Regenerative Medicine was established by the University of Pittsburgh School of Medicine and its clinical partner, UPMC, to realize the vast potential of tissue engineering and other techniques aimed at repairing damaged or diseased tissues and organs. The McGowan Institute serves as a single base of operations for the university's leading scientists and clinical faculty working to develop tissue engineering, cellular therapies, biosurgery and artificial and biohybrid organ devices.

Anita Srikameswaran | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>