Multifunctional nano-sized drug carriers based on reactive polypept(o)ides

Secondary structure formation enables morphology control while reactive groups in the polypeptide segment allow for adjustment of function. ill./©:Kristina Klinker/Olga Schäfer

Nano-sized carrier systems find medical application to improve pharmacologic properties of bioactive agents. For many therapeutic approaches, it is important that the carrier system can stably incorporate the cargo during circulation without inducing aggregation, while cargo should ideally only be released after successful cellular uptake.

These requirements have thus far only been met by chemistry approaches with nanoparticles that are difficult to characterize. Consequently, clinical translation of these systems has been very difficult to achieve.

In cooperation with researchers from the University of Tokyo and Gutenberg Research Awardee Prof. Kazunori Kataoka, Chemists from Mainz have been able to demonstrate that reactive polypept(o)ides constitute ideal building blocks to control morphology and function of carrier systems in a simple but precise manner.

Polypept(o)ides (polysarcosine-block-polypeptide copolymers) have emerged as interesting hybrid materials for drug carrier systems since they combine protein-resistance and high water-solubilty of polysarcosine with the stimuli-responsiveness, intrinsic multifunctionality, and secondary structure formation of polypeptides.

In this cooperative work, the researchers could show for the first time that the formation of β-sheets by the synthetic polypeptide segment can be exploited to deliberately manipulate the morphology of polymeric micelles (Klinker K et al. Angew. Chem. Int. Ed. 2017, 56 (32), 9608-9613 & Angew. Chem. 2017, 129 (32), 9737–9742), which enables the synthesis of either spherical or worm-like micelles from the same block copolymer.

By employing reactive groups in the polypeptide segment of the block copolymer, micelles can be core cross-linked by dithiols, resulting in bio-reversible disulfide bonds. Due a difference in redox potential, disulfides are considered stable extracellularly, while they are rapidly reduced to free dithiols intracellularly, which leads to a disintegration of the carrier system and release of the cargo.

“In this way, a variety of different nanocarriers with different functions becomes readily accessible from one single block copolymer and a very selective post-polymerization step. This modular approach to nanoparticles with different function and morphology bears the advantage to address important questions with good comparability, such as the influence of size and shape on in vivo circulation times, biodistribution, tumor accumulation, cell uptake and therapeutic response since the same starting material is used” comments Matthias Barz.

First in vivo experiments have already demonstrated that these core-stabilized micellar nanocarriers exhibit stable circulation behavior, thus indicating that interactions with serum components or blood vessels are absent. Only by ensuring that no unspecific interactions occur within the complex biological setting, cellular uptake in desired specific cell populations seems feasible. The therapeutic potential of the described nanoparticle platform will be further investigated with regards to immunotherapy of malignant melanoma within the SFB 1066.

Image:
http://www.uni-mainz.de/bilder_presse/09_orgchemie_nanodimensionale_wirkstofftra…
Secondary structure formation enables morphology control while reactive groups in the polypeptide segment allow for adjustment of function.
ill./©:Kristina Klinker/Olga Schäfer

Publication:
Klinker K, Schäfer O, Huesmann D, Bauer T, Capelôa L, Braun L, Stergiou N, Schinnerer M, Dirisala A, Miyata K, Osada K, Cabral H, Kataoka K, Barz M*.
Secondary Structure-Driven Self-Assembly of Reactive Polypept(o)ides: Controlling Size, Shape and Function of Core Cross-Linked Nanostructures.
Angew. Chem. Int. Ed. 2017, 56 (32), 9608-9613
Sekundärstrukturausbildung als Triebkraft für die Selbstassemblierung von reaktiven Polypept(o)iden: Steuerung von Größe, Form und Funktion von kernvernetzten Nanostrukturen.
Angew. Chem. 2017, 129 (32), 9737–9742

Further information:
Dr. Matthias Barz
Institute of Organic Chemistry
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-26256
fax +49 6131 39-26092
e-mail: barz@uni-mainz.de

http://www.ak-zentel.chemie.uni-mainz.de

Media Contact

Petra Giegerich idw - Informationsdienst Wissenschaft

More Information:

http://www.fau.de/

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Combatting disruptive ‘noise’ in quantum communication

In a significant milestone for quantum communication technology, an experiment has demonstrated how networks can be leveraged to combat disruptive ‘noise’ in quantum communications. The international effort led by researchers…

Stretchable quantum dot display

Intrinsically stretchable quantum dot-based light-emitting diodes achieved record-breaking performance. A team of South Korean scientists led by Professor KIM Dae-Hyeong of the Center for Nanoparticle Research within the Institute for…

Internet can achieve quantum speed with light saved as sound

Researchers at the University of Copenhagen’s Niels Bohr Institute have developed a new way to create quantum memory: A small drum can store data sent with light in its sonic…

Partners & Sponsors