Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multicolor quantum dots aid in cancer biopsy diagnosis

07.07.2010
The tunable fluorescent nanoparticles known as quantum dots make ideal tools for distinguishing and identifying rare cancer cells in tissue biopsies, Emory and Georgia Tech scientists have demonstrated.

An article to be featured on the cover of the July 15 issue of Analytical Chemistry describes how multicolor quantum dots linked to antibodies can distinguish the Reed-Sternberg cells that are characteristic of Hodgkin's lymphoma.

"Our multicolor quantum dot staining method provides rapid detection and identification of rare malignant cells from heterogenous tissue specimens," says senior author Shuming Nie, PhD, the Wallace H. Coulter distinguished professor in the Coulter department of biomedical engineering at Georgia Tech and Emory University. "The clinical utility is not limited to Hodgkin's lymphoma but potentially could be extended to detect cancer stem cells, tumor-associated macrophages and other rare cell types."

Quantum dots are nanometer-sized semiconductor crystals that have unique chemical and physical properties due to their size and their highly compact structure. Quantum dots can be chemically linked to antibodies, which can detect molecules present on the surfaces or internal parts of cancer cells.

As a test of quantum dots' discriminatory power, the authors used four varieties at once -- white, red, green and blue – each detecting a different protein, to stain lymph node biopsies. The goal was to distinguish six Hodgkin's lymphoma cases from two other types of lymphoma and samples from two patients with benign growths in their lymph nodes.

Reed Sternberg cells have a distinctive appearance, but in lymph node tissue, they are usually surrounded by other white blood cells. The authors describe identifying them as a task like "finding a needle in a haystack."

"We're excited about this technology," says Andrew Young, MD, PhD, associate professor of pathology and laboratory medicine at Emory University School of Medicine and director of clinical laboratories at Grady Health System. "We expect it could help guide the type of treatment a cancer patient gets and that it could be used with a wider variety of tumor types."

The most reliable way to assign cell identity is to look at more than one protein, Young says. With the standard methods in most pathology labs, staining cells with four different antibodies would require four separate slides – a problem when the specimen is very small. Small diagnostic specimens are common today, because they minimize the burden on the patient. In addition, the images from multiple separate slides wouldn't depict exactly the same cells. The quantum dots allow "multiplexing": superimposing four colors on top of each other.

Hodgkin's lymphoma is usually treated with chemotherapy and radiation, and is notable among the subtypes of adult lymphoma because the survival rate is relatively high. Young says the quantum dot technique could be useful for other types of cancer, where distinguishing cancer cells based on surface or genetic markers can point oncologists towards "targeted therapies" designed for one particular type of tumor.

Shuming Nie is director and principal investigator of Emory's Center for Cancer Nanotechnology Excellence, supported by the National Cancer Institute. He is associate director for nanotechnology bioengineering at the Winship Cancer Institute of Emory University and a Georgia Cancer Coalition Scholar.

The research was supported by the National Cancer Institute.

Reference: J. Liu, S.K. Lau, V.A. Varma, B.A Kairdolf and S. Nie. Multiplexed detection of characterization of rare tumor cells in Hodgkin's lymphoma with multicolor quantum dots. Anal. Chem. DOI: 10.1021/ac101065b (online before print) 2010.

Writer: Quinn Eastman

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focused on missions of teaching, research, health care and public service. Its components include the Emory University School of Medicine, Nell Hodgson Woodruff School of Nursing, and Rollins School of Public Health; Yerkes National Primate Research Center; Winship Cancer Institute of Emory University; and Emory Healthcare, the largest, most comprehensive health system in Georgia. Emory Healthcare includes: The Emory Clinic, Emory-Children's Center, Emory University Hospital, Emory University Hospital Midtown, Wesley Woods Center, and Emory University Orthopaedics & Spine Hospital. The Woodruff Health Sciences Center has a $2.5 billion budget, 17,600 employees, 2,500 full-time and 1,500 affiliated faculty, 4,700 students and trainees, and a $5.7 billion economic impact on metro Atlanta.

Learn more about Emory's health sciences: http://emoryhealthblog.com - @emoryhealthsci (Twitter) - http://emoryhealthsciences.org

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

For a chimpanzee, one good turn deserves another

27.06.2017 | Life Sciences

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>