Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multi-tasking Molecule Holds Key to Allergic Reactions

11.08.2008
As the summer approaches most of us rejoice, reach for the sunscreen and head outdoors. But an ever-growing number of people reach for tissue instead as pollen leaves eyes watering, noses running and spirits dwindling.

Hay fever is just one of a host of hypersensitivity allergic diseases that cause suffering worldwide and others, such as severe reactions to bee stings or eating peanuts, can be more serious and even fatal.

Now, scientists at the Salk Institute for Biological Studies have uncovered the molecular mechanisms behind such allergies, insight they hope will lead to new therapies, both to stop the summer sneezing and treat more severe allergic responses.

“These results may allow us to develop acute inhibitors of allergic reactions that do not have the side-effects of current treatments such as drowsiness,” says Inder Verma, Ph.D., a professor in the Laboratory of Genetics and senior author of the study published in the August 8 issue of Cell.

When our bodies encounter an allergen (such as pollen), specialized cells called mast cells undergo “de-granulation”, during which they release the chemical histamine. Histamine in turn causes fluid to build up in the surrounding tissue. When this process is working normally it offers protection against the allergen but in people with allergic diseases, de-granulation can occur throughout the body, leading to severe inflammation and in the worst cases, anaphylactic shock and death.

And allergies are a growing problem the world over. “One out of three Japanese people suffer from allergies,” says postdoctoral researcher Kotaro Suzuki, Ph.D., who led the current study.

During de-granulation, histamine is bundled into membrane bound sacks called vesicles, which then transport it to the cell surface. When the vesicles reach the surface they fuse with the outer membrane of the cell, spilling their contents into the extra-cellular space in a process known as exocytosis. To prevent this process from going overboard the scientists first had to understand how de-granulation is regulated.

Their hunch was that the allergic response would involve NF-êB, a protein found in the nucleus that regulates gene expression and was already known to be involved in other types of immune response. To investigate this hypothesis they focused on the role of IKK2, a protein kinase, which is essential for NF-êB activation.

To generate mast cells that were free of IKK2, the researchers transplanted mice that had no mast cells of their own with either normal mast cells or mast cells that lacked IKK2. Strikingly, mice with mast cells lacking IKK2 had reduced allergic reactions. The researchers assumed that the lowered response was due to reduced NF-êB, but to their surprise, inactivating NF-êB signaling alone did not have the same effect. “That was one of the first clues that IKK2 had other roles to play,” says Verma.

“IKK2 knock out mast cells couldn’t release enough histamine,” added Suzuki ‘but we still didn’t know the molecular mechanisms.” What they did know already was that de-granulation requires a collection of proteins — known as the SNARE complex — to assemble at the cell surface.

Suzuki and Verma used biochemical analysis to show that when an allergen is present, IKK2 binds to and activates one particular SNARE component called SNAP-23. Without IKK2, SNAP-23 is missing from the SNARE complex and conversely, when SNAP-23 is permanently activated, removing IKK2 no longer impairs de-granulation. “This is the first major feather on the cap of IKK2 in addition to NF-êB,” says Verma.

But IKK2’s role in the allergic response does not stop there - it multi-tasks. After the rapid “early phase” de-granulation response, mast cells undergo a “late-phase” reaction during which certain genes are turned on to help fight the allergen. Suzuki and Verma showed that the late-phase response also requires IKK2, but that this time it functions by its more usual route - via NF-êB.

The Salk researchers are now testing inhibitors of IKK2 as acute treatment for allergic reactions. Unlike anti-histamines, which are currently used to combat allergies, IKK2 inhibitors would have the added benefit of reducing both the early and late phase allergic responses.

And the newly discovered role for IKK2’s may not be limited to allergic reactions. Many fundamental processes in our bodies involve exocytosis, ranging from secretion of insulin in the pancreas to synaptic transmission, the process by which signals are passed from one nerve cell to another. If IKK2 is involved in these processes it may have a role in other pathologies such as diabetes and nervous system diseases.

The Salk Institute for Biological Studies in La Jolla, California, is an independent nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health and the training of future generations of researchers. Jonas Salk, M.D., whose polio vaccine all but eradicated the crippling disease poliomyelitis in 1955, opened the Institute in 1965 with a gift of land from the City of San Diego and the financial support of the March of Dimes.

Gina Kirchweger | Newswise Science News
Further information:
http://www.salk.edu

Further reports about: Allergic IKK2 Molecule Multi-tasking NF-êB Verma allergies de-granulation

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>