Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multi-tasking Molecule Holds Key to Allergic Reactions

11.08.2008
As the summer approaches most of us rejoice, reach for the sunscreen and head outdoors. But an ever-growing number of people reach for tissue instead as pollen leaves eyes watering, noses running and spirits dwindling.

Hay fever is just one of a host of hypersensitivity allergic diseases that cause suffering worldwide and others, such as severe reactions to bee stings or eating peanuts, can be more serious and even fatal.

Now, scientists at the Salk Institute for Biological Studies have uncovered the molecular mechanisms behind such allergies, insight they hope will lead to new therapies, both to stop the summer sneezing and treat more severe allergic responses.

“These results may allow us to develop acute inhibitors of allergic reactions that do not have the side-effects of current treatments such as drowsiness,” says Inder Verma, Ph.D., a professor in the Laboratory of Genetics and senior author of the study published in the August 8 issue of Cell.

When our bodies encounter an allergen (such as pollen), specialized cells called mast cells undergo “de-granulation”, during which they release the chemical histamine. Histamine in turn causes fluid to build up in the surrounding tissue. When this process is working normally it offers protection against the allergen but in people with allergic diseases, de-granulation can occur throughout the body, leading to severe inflammation and in the worst cases, anaphylactic shock and death.

And allergies are a growing problem the world over. “One out of three Japanese people suffer from allergies,” says postdoctoral researcher Kotaro Suzuki, Ph.D., who led the current study.

During de-granulation, histamine is bundled into membrane bound sacks called vesicles, which then transport it to the cell surface. When the vesicles reach the surface they fuse with the outer membrane of the cell, spilling their contents into the extra-cellular space in a process known as exocytosis. To prevent this process from going overboard the scientists first had to understand how de-granulation is regulated.

Their hunch was that the allergic response would involve NF-êB, a protein found in the nucleus that regulates gene expression and was already known to be involved in other types of immune response. To investigate this hypothesis they focused on the role of IKK2, a protein kinase, which is essential for NF-êB activation.

To generate mast cells that were free of IKK2, the researchers transplanted mice that had no mast cells of their own with either normal mast cells or mast cells that lacked IKK2. Strikingly, mice with mast cells lacking IKK2 had reduced allergic reactions. The researchers assumed that the lowered response was due to reduced NF-êB, but to their surprise, inactivating NF-êB signaling alone did not have the same effect. “That was one of the first clues that IKK2 had other roles to play,” says Verma.

“IKK2 knock out mast cells couldn’t release enough histamine,” added Suzuki ‘but we still didn’t know the molecular mechanisms.” What they did know already was that de-granulation requires a collection of proteins — known as the SNARE complex — to assemble at the cell surface.

Suzuki and Verma used biochemical analysis to show that when an allergen is present, IKK2 binds to and activates one particular SNARE component called SNAP-23. Without IKK2, SNAP-23 is missing from the SNARE complex and conversely, when SNAP-23 is permanently activated, removing IKK2 no longer impairs de-granulation. “This is the first major feather on the cap of IKK2 in addition to NF-êB,” says Verma.

But IKK2’s role in the allergic response does not stop there - it multi-tasks. After the rapid “early phase” de-granulation response, mast cells undergo a “late-phase” reaction during which certain genes are turned on to help fight the allergen. Suzuki and Verma showed that the late-phase response also requires IKK2, but that this time it functions by its more usual route - via NF-êB.

The Salk researchers are now testing inhibitors of IKK2 as acute treatment for allergic reactions. Unlike anti-histamines, which are currently used to combat allergies, IKK2 inhibitors would have the added benefit of reducing both the early and late phase allergic responses.

And the newly discovered role for IKK2’s may not be limited to allergic reactions. Many fundamental processes in our bodies involve exocytosis, ranging from secretion of insulin in the pancreas to synaptic transmission, the process by which signals are passed from one nerve cell to another. If IKK2 is involved in these processes it may have a role in other pathologies such as diabetes and nervous system diseases.

The Salk Institute for Biological Studies in La Jolla, California, is an independent nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health and the training of future generations of researchers. Jonas Salk, M.D., whose polio vaccine all but eradicated the crippling disease poliomyelitis in 1955, opened the Institute in 1965 with a gift of land from the City of San Diego and the financial support of the March of Dimes.

Gina Kirchweger | Newswise Science News
Further information:
http://www.salk.edu

Further reports about: Allergic IKK2 Molecule Multi-tasking NF-êB Verma allergies de-granulation

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>