Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multi-tasking Molecule Holds Key to Allergic Reactions

11.08.2008
As the summer approaches most of us rejoice, reach for the sunscreen and head outdoors. But an ever-growing number of people reach for tissue instead as pollen leaves eyes watering, noses running and spirits dwindling.

Hay fever is just one of a host of hypersensitivity allergic diseases that cause suffering worldwide and others, such as severe reactions to bee stings or eating peanuts, can be more serious and even fatal.

Now, scientists at the Salk Institute for Biological Studies have uncovered the molecular mechanisms behind such allergies, insight they hope will lead to new therapies, both to stop the summer sneezing and treat more severe allergic responses.

“These results may allow us to develop acute inhibitors of allergic reactions that do not have the side-effects of current treatments such as drowsiness,” says Inder Verma, Ph.D., a professor in the Laboratory of Genetics and senior author of the study published in the August 8 issue of Cell.

When our bodies encounter an allergen (such as pollen), specialized cells called mast cells undergo “de-granulation”, during which they release the chemical histamine. Histamine in turn causes fluid to build up in the surrounding tissue. When this process is working normally it offers protection against the allergen but in people with allergic diseases, de-granulation can occur throughout the body, leading to severe inflammation and in the worst cases, anaphylactic shock and death.

And allergies are a growing problem the world over. “One out of three Japanese people suffer from allergies,” says postdoctoral researcher Kotaro Suzuki, Ph.D., who led the current study.

During de-granulation, histamine is bundled into membrane bound sacks called vesicles, which then transport it to the cell surface. When the vesicles reach the surface they fuse with the outer membrane of the cell, spilling their contents into the extra-cellular space in a process known as exocytosis. To prevent this process from going overboard the scientists first had to understand how de-granulation is regulated.

Their hunch was that the allergic response would involve NF-êB, a protein found in the nucleus that regulates gene expression and was already known to be involved in other types of immune response. To investigate this hypothesis they focused on the role of IKK2, a protein kinase, which is essential for NF-êB activation.

To generate mast cells that were free of IKK2, the researchers transplanted mice that had no mast cells of their own with either normal mast cells or mast cells that lacked IKK2. Strikingly, mice with mast cells lacking IKK2 had reduced allergic reactions. The researchers assumed that the lowered response was due to reduced NF-êB, but to their surprise, inactivating NF-êB signaling alone did not have the same effect. “That was one of the first clues that IKK2 had other roles to play,” says Verma.

“IKK2 knock out mast cells couldn’t release enough histamine,” added Suzuki ‘but we still didn’t know the molecular mechanisms.” What they did know already was that de-granulation requires a collection of proteins — known as the SNARE complex — to assemble at the cell surface.

Suzuki and Verma used biochemical analysis to show that when an allergen is present, IKK2 binds to and activates one particular SNARE component called SNAP-23. Without IKK2, SNAP-23 is missing from the SNARE complex and conversely, when SNAP-23 is permanently activated, removing IKK2 no longer impairs de-granulation. “This is the first major feather on the cap of IKK2 in addition to NF-êB,” says Verma.

But IKK2’s role in the allergic response does not stop there - it multi-tasks. After the rapid “early phase” de-granulation response, mast cells undergo a “late-phase” reaction during which certain genes are turned on to help fight the allergen. Suzuki and Verma showed that the late-phase response also requires IKK2, but that this time it functions by its more usual route - via NF-êB.

The Salk researchers are now testing inhibitors of IKK2 as acute treatment for allergic reactions. Unlike anti-histamines, which are currently used to combat allergies, IKK2 inhibitors would have the added benefit of reducing both the early and late phase allergic responses.

And the newly discovered role for IKK2’s may not be limited to allergic reactions. Many fundamental processes in our bodies involve exocytosis, ranging from secretion of insulin in the pancreas to synaptic transmission, the process by which signals are passed from one nerve cell to another. If IKK2 is involved in these processes it may have a role in other pathologies such as diabetes and nervous system diseases.

The Salk Institute for Biological Studies in La Jolla, California, is an independent nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health and the training of future generations of researchers. Jonas Salk, M.D., whose polio vaccine all but eradicated the crippling disease poliomyelitis in 1955, opened the Institute in 1965 with a gift of land from the City of San Diego and the financial support of the March of Dimes.

Gina Kirchweger | Newswise Science News
Further information:
http://www.salk.edu

Further reports about: Allergic IKK2 Molecule Multi-tasking NF-êB Verma allergies de-granulation

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>