Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MU scientist develops salmonella test that makes food safer, reduce recalls

23.11.2010
Earlier this year, an outbreak of salmonella caused by infected eggs resulted in thousands of illnesses before a costly recall could be implemented. Now, University of Missouri researchers have created a new test for salmonella in poultry and eggs that will produce faster and more accurate results than most currently available tests. The new test could have prevented the contaminated eggs from being shipped to stores.

"Processors and consumers will benefit from the speed and sensitivity of the new test's results," said Azlin Mustapha, associate professor of food science in the College of Agriculture, Food and Natural Resources. "This will keep companies from shipping contaminated products, and thus, keep salmonella infected products out of consumers' hands."

Salmonella is the most common cause of food poisoning in the United States, according to the Centers for Disease Control. Salmonellosis, the disease caused by salmonella, causes diarrhea, vomiting, fever, abdominal cramps and, in severe cases, death. Mustapha said salmonella testing in poultry is important because it persists in birds' spleens and reproductive tracts. An infected bird passes the infection on to all of its eggs.

The most commonly used testing method for salmonella can take up to five days to produce results. Mustapha's research allows scientists to use a process, known as polymerase chain reaction (PCR), which can cut testing time to as little as five to 12 hours. PCR-based testing methods for salmonella have been available for use by the food industry for years, but current methods often produce false-positive results because they do not differentiate between live and dead salmonella, thus skewing the accuracy of the test. Only live salmonella cells trigger salmonellosis.

Mustapha modified the PCR test by adding a dye to the test sample. The dye is absorbed by dead salmonella cells; thus, the PCR test can ignore the dead cells. Mustapha's modification lets food scientists use the PCR test to capitalize on its speed, selectivity and sensitivity, but avoid false-positive tests by differentiating between dead and live cells.

The reduced testing time would enable companies to have accurate test results before a product is shipped. With current tests, food could be in stores before salmonella test results are available. This new technology will enable companies to avoid costly recalls and keep consumers safe.

Mustapha said both companies and testing agencies could use the testing process she has developed. Companies must make an initial investment in a PCR instrument and train personnel to use it. However, she said the system requires less labor and time than conventional testing techniques. A similar process developed by Mustapha to detect E. coli in ground beef has been adopted by the Missouri Department of Agriculture.

Mustapha worked with Luxin Wang, a graduate student in the food science program. Their research results were published recently in the Journal of Food Science.

Christian Basi | EurekAlert!
Further information:
http://www.missouri.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Fraunhofer Researchers Develop High-Pressure Sensors for Extreme Temperature

28.06.2017 | Power and Electrical Engineering

Zeolite catalysts pave the road to decentral chemical processes Confined space increases reactivity

28.06.2017 | Life Sciences

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>