Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MU scientist develops salmonella test that makes food safer, reduce recalls

23.11.2010
Earlier this year, an outbreak of salmonella caused by infected eggs resulted in thousands of illnesses before a costly recall could be implemented. Now, University of Missouri researchers have created a new test for salmonella in poultry and eggs that will produce faster and more accurate results than most currently available tests. The new test could have prevented the contaminated eggs from being shipped to stores.

"Processors and consumers will benefit from the speed and sensitivity of the new test's results," said Azlin Mustapha, associate professor of food science in the College of Agriculture, Food and Natural Resources. "This will keep companies from shipping contaminated products, and thus, keep salmonella infected products out of consumers' hands."

Salmonella is the most common cause of food poisoning in the United States, according to the Centers for Disease Control. Salmonellosis, the disease caused by salmonella, causes diarrhea, vomiting, fever, abdominal cramps and, in severe cases, death. Mustapha said salmonella testing in poultry is important because it persists in birds' spleens and reproductive tracts. An infected bird passes the infection on to all of its eggs.

The most commonly used testing method for salmonella can take up to five days to produce results. Mustapha's research allows scientists to use a process, known as polymerase chain reaction (PCR), which can cut testing time to as little as five to 12 hours. PCR-based testing methods for salmonella have been available for use by the food industry for years, but current methods often produce false-positive results because they do not differentiate between live and dead salmonella, thus skewing the accuracy of the test. Only live salmonella cells trigger salmonellosis.

Mustapha modified the PCR test by adding a dye to the test sample. The dye is absorbed by dead salmonella cells; thus, the PCR test can ignore the dead cells. Mustapha's modification lets food scientists use the PCR test to capitalize on its speed, selectivity and sensitivity, but avoid false-positive tests by differentiating between dead and live cells.

The reduced testing time would enable companies to have accurate test results before a product is shipped. With current tests, food could be in stores before salmonella test results are available. This new technology will enable companies to avoid costly recalls and keep consumers safe.

Mustapha said both companies and testing agencies could use the testing process she has developed. Companies must make an initial investment in a PCR instrument and train personnel to use it. However, she said the system requires less labor and time than conventional testing techniques. A similar process developed by Mustapha to detect E. coli in ground beef has been adopted by the Missouri Department of Agriculture.

Mustapha worked with Luxin Wang, a graduate student in the food science program. Their research results were published recently in the Journal of Food Science.

Christian Basi | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>