Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MU researchers find synthetic RNA lessens severity of fatal disease

22.11.2011
Spinal Muscular Atrophy affects one in 6,000 children; no known cure

A team of University of Missouri researchers have found that targeting a synthetic molecule to a specific gene could help the severity of the disease Spinal Muscular Atrophy (SMA) – the leading genetic cause of infantile death in the world.

"When we introduced synthetic RNA into mice that carry the genes responsible for SMA, the disease's severity was significantly lowered," said Chris Lorson, researcher at the Bond Life Sciences Center and professor in the Department of Veterinary Pathobiology and the Department of Molecular Microbiology and Immunology. "The mice that receive synthetic RNA gain more weight, live longer, and had improvements in motor skills. These results are very exciting."

SMA is a rare genetic disease that is inherited by one in 6,000 children, who often die young because there is no cure. Children who inherit SMA are missing a gene that produces a protein which directs nerves in the spine to give commands to muscles. Lorson's lab focuses on targeting a partially functioning back-up copy of the missing gene, known as SMN-2, into producing the needed protein.

While the results are promising, Lorson notes additional research is needed before synthetic RNA could be used on humans for SMA. Clinical trials for similar synthetic RNAs are currently being performed in other neurodegenerative disease such as Lou Gehrig's or ALS. In SMA, there are clinical trials taking place in many labs across the country that are investigating drug compounds to increase SMN-2 protein production.

"It's been remarkable to watch how quickly SMN-2 knowledge has transformed from basic molecular biology to being modified targets for novel therapeutics," Lorson said. "SMN-2 is like a light that's been dimmed, and we're trying anything to get it brighter. Even turning it up a little bit would help dramatically."

The study, "Bifunctional RNAs Targeting the Intronic Splicing Silencer N1 Increase SMN Levels and Reduce Disease Severity in an Animal Model of Spinal Muscular Atrophy," was published in the journal Molecular Therapy. Co-authors include Erkan Osman and Pei-Fen Yen of the University of Missouri.

Steven Adams | EurekAlert!
Further information:
http://www.missouri.edu

Further reports about: Molecular Target RNA SMA SMN-2 atrophy molecular microbiology muscular spinal synthetic RNA

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>