Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MU researchers find synthetic RNA lessens severity of fatal disease

22.11.2011
Spinal Muscular Atrophy affects one in 6,000 children; no known cure

A team of University of Missouri researchers have found that targeting a synthetic molecule to a specific gene could help the severity of the disease Spinal Muscular Atrophy (SMA) – the leading genetic cause of infantile death in the world.

"When we introduced synthetic RNA into mice that carry the genes responsible for SMA, the disease's severity was significantly lowered," said Chris Lorson, researcher at the Bond Life Sciences Center and professor in the Department of Veterinary Pathobiology and the Department of Molecular Microbiology and Immunology. "The mice that receive synthetic RNA gain more weight, live longer, and had improvements in motor skills. These results are very exciting."

SMA is a rare genetic disease that is inherited by one in 6,000 children, who often die young because there is no cure. Children who inherit SMA are missing a gene that produces a protein which directs nerves in the spine to give commands to muscles. Lorson's lab focuses on targeting a partially functioning back-up copy of the missing gene, known as SMN-2, into producing the needed protein.

While the results are promising, Lorson notes additional research is needed before synthetic RNA could be used on humans for SMA. Clinical trials for similar synthetic RNAs are currently being performed in other neurodegenerative disease such as Lou Gehrig's or ALS. In SMA, there are clinical trials taking place in many labs across the country that are investigating drug compounds to increase SMN-2 protein production.

"It's been remarkable to watch how quickly SMN-2 knowledge has transformed from basic molecular biology to being modified targets for novel therapeutics," Lorson said. "SMN-2 is like a light that's been dimmed, and we're trying anything to get it brighter. Even turning it up a little bit would help dramatically."

The study, "Bifunctional RNAs Targeting the Intronic Splicing Silencer N1 Increase SMN Levels and Reduce Disease Severity in an Animal Model of Spinal Muscular Atrophy," was published in the journal Molecular Therapy. Co-authors include Erkan Osman and Pei-Fen Yen of the University of Missouri.

Steven Adams | EurekAlert!
Further information:
http://www.missouri.edu

Further reports about: Molecular Target RNA SMA SMN-2 atrophy molecular microbiology muscular spinal synthetic RNA

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>