Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MSU team overcomes challenges, proves that microbes swim to hydrogen gas

Scientists have long believed that microorganisms that produce methane swim toward the hydrogen gas they need to stay alive, but it has been too hard to prove in the lab.

Montana State University researchers have now overcome those challenges, allowing them to verify it for the first time, said Matthew Fields, an associate professor in MSU’s Department of Microbiology and co-author of a new paper describing the find.

In the process, the researchers discovered hydrogenotaxis, the movement of a biological cell toward hydrogen gas, and noticed that the cells were especially speedy when starving. They also made a video of the microorganism rushing toward its next meal. The methane-producing organism lives without oxygen, and it’s classified as Archaea, one of the three domains of life.

An article explaining MSU’s find is published in the Nov. 5 issue of Scientific Reports, an online journal affiliated with the international journal Nature.

The MSU breakthrough helps fill in gaps of knowledge about microorganisms that are crucial to Earth’s carbon cycle, early Earth processes and climate change, Fields said. It will also have implications across a wide range of disciplines since methanogenic Archaea live in anaerobic environments, ranging from salt marshes to wastewater treatment to the human microbiota. Whenever organic matter is being degraded, these microorganisms are typically present.

“They are the bottom of the food chain,” Fields said.

MSU microbiologist Gill Geesey, who encouraged the team to pursue the project, added that the scientists demonstrated hydrogenotaxis for the first time in any domain of life. He noted that the movement likely gives microorganisms a competitive advantage for accessing hydrogen in the environment.

“Hydrogenotaxis may also promote the establishment and maintenance of microbial interactions at the population- and community-level, which has been a focus of research at the Center for Biofilm Engineering at Montana State University since its establishment in 1990,” Geesey said. “The observed hydrogenotaxis could represent an important strategy used by methanogens and other hydrogen-utilizing microbes for cyclingof elements in natural and engineered processes. “

Fields and four collaborators conducted their research in the Center for Biofilm Engineering (CBE), using a common microorganism that converts hydrogen gas into methane. Methanococcus maripaludis is approximately one micron in diameter -- one millionth of a meter -- and can only be seen under the microscope. It is difficult to grow in a lab, one reason that researchers have been unable to verify earlier that Archaea organisms swim toward hydrogen gas, Fields said.

To conduct their research, the scientists created an oxygen-free environment in a fragile tube. Creating that environment was challenging, another reason that their discovery didn’t occur earlier, Fields said.

After varying lengths of time, they released the cells into a solution to encounter hydrogen gas from the opposite end of the tube. That’s where they proved what everyone had suspected – that Archaea swim through liquid toward hydrogen gas.

Every step in their experiments had to be done without breaking the tube or introducing oxygen, Fields said. It also had to be done inside an incubator with microscopes and computers. Computer software tracked the cells, proved they responded to hydrogen gas, and determined their speed.

Considering that speed relates to body length, Fields said the microbes moved faster than cheetahs, the fastest land animal on Earth.

Lead author of the study was Kristen Brileya, a former student of Fields’ in the CBE and MSU’s Department of Microbiology. Co-authors in addition to Fields were James Connolly, a current graduate student in the CBE and Department of Chemical and Biological Engineering; Carey Downey, a previous undergraduate student in the Department of Microbiology; and Robin Gerlach, faculty member in the CBE and Department of Chemical and Biological Engineering.

Funding for the project was provided by the U.S. Department of Energy and the National Science Foundation.

Evelyn Boswell, (406) 994-5135 or

Evelyn Boswell | EurekAlert!
Further information:

Further reports about: Biofilm chemical engineering hydrogen gas microbiology

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Scientists invented method of catching bacteria with 'photonic hook'

20.03.2018 | Physics and Astronomy

Next Generation Cryptography

20.03.2018 | Information Technology

Science & Research
Overview of more VideoLinks >>>