Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MSU team overcomes challenges, proves that microbes swim to hydrogen gas

11.11.2013
Scientists have long believed that microorganisms that produce methane swim toward the hydrogen gas they need to stay alive, but it has been too hard to prove in the lab.

Montana State University researchers have now overcome those challenges, allowing them to verify it for the first time, said Matthew Fields, an associate professor in MSU’s Department of Microbiology and co-author of a new paper describing the find.

In the process, the researchers discovered hydrogenotaxis, the movement of a biological cell toward hydrogen gas, and noticed that the cells were especially speedy when starving. They also made a video of the microorganism rushing toward its next meal. The methane-producing organism lives without oxygen, and it’s classified as Archaea, one of the three domains of life.

An article explaining MSU’s find is published in the Nov. 5 issue of Scientific Reports, an online journal affiliated with the international journal Nature.

The MSU breakthrough helps fill in gaps of knowledge about microorganisms that are crucial to Earth’s carbon cycle, early Earth processes and climate change, Fields said. It will also have implications across a wide range of disciplines since methanogenic Archaea live in anaerobic environments, ranging from salt marshes to wastewater treatment to the human microbiota. Whenever organic matter is being degraded, these microorganisms are typically present.

“They are the bottom of the food chain,” Fields said.

MSU microbiologist Gill Geesey, who encouraged the team to pursue the project, added that the scientists demonstrated hydrogenotaxis for the first time in any domain of life. He noted that the movement likely gives microorganisms a competitive advantage for accessing hydrogen in the environment.

“Hydrogenotaxis may also promote the establishment and maintenance of microbial interactions at the population- and community-level, which has been a focus of research at the Center for Biofilm Engineering at Montana State University since its establishment in 1990,” Geesey said. “The observed hydrogenotaxis could represent an important strategy used by methanogens and other hydrogen-utilizing microbes for cyclingof elements in natural and engineered processes. “

Fields and four collaborators conducted their research in the Center for Biofilm Engineering (CBE), using a common microorganism that converts hydrogen gas into methane. Methanococcus maripaludis is approximately one micron in diameter -- one millionth of a meter -- and can only be seen under the microscope. It is difficult to grow in a lab, one reason that researchers have been unable to verify earlier that Archaea organisms swim toward hydrogen gas, Fields said.

To conduct their research, the scientists created an oxygen-free environment in a fragile tube. Creating that environment was challenging, another reason that their discovery didn’t occur earlier, Fields said.

After varying lengths of time, they released the cells into a solution to encounter hydrogen gas from the opposite end of the tube. That’s where they proved what everyone had suspected – that Archaea swim through liquid toward hydrogen gas.

Every step in their experiments had to be done without breaking the tube or introducing oxygen, Fields said. It also had to be done inside an incubator with microscopes and computers. Computer software tracked the cells, proved they responded to hydrogen gas, and determined their speed.

Considering that speed relates to body length, Fields said the microbes moved faster than cheetahs, the fastest land animal on Earth.

Lead author of the study was Kristen Brileya, a former student of Fields’ in the CBE and MSU’s Department of Microbiology. Co-authors in addition to Fields were James Connolly, a current graduate student in the CBE and Department of Chemical and Biological Engineering; Carey Downey, a previous undergraduate student in the Department of Microbiology; and Robin Gerlach, faculty member in the CBE and Department of Chemical and Biological Engineering.

Funding for the project was provided by the U.S. Department of Energy and the National Science Foundation.

Evelyn Boswell, (406) 994-5135 or evelynb@montana.edu

Evelyn Boswell | EurekAlert!
Further information:
http://www.montana.edu

Further reports about: Biofilm chemical engineering hydrogen gas microbiology

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>