Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MSU scientists find new gene that helps plants beat the heat

Michigan State University plant scientists have discovered another piece of the genetic puzzle that controls how plants respond to high temperatures. That may allow plant breeders to create new varieties of crops that flourish in warmer, drier climates.

The MSU researchers found that the gene bZIP28 helps regulate heat stress response in Arabidopsis thaliana, a member of the mustard family used as a model plant for genetic studies. This is the first time bZIP28 has been shown to play a role heat tolerance. The research is published in the Oct. 6 issue of the Proceedings of the National Academy of Sciences.

"We also found that bZIP28 was responding to signals from the endoplasmic reticulum, which is the first time the ER has been shown to be involved with the response to heat," said Robert Larkin, MSU assistant professor of biochemistry and molecular biology and corresponding author of the paper. "We're finding that heat tolerance is a more complex process than was first thought."

Previous research has shown that the nucleus, the "brain" of the cell, and cytosol, the fluid inside cells, play a role in how plants respond to heat. The endoplasmic reticulum, a membrane in the cell that consists of small tubes and sac-like structures, is mainly responsible for packaging and storing proteins in the cell.

According to Christoph Benning, MSU professor of biochemistry and molecular biology and a member of the research team, the scientists were looking for genes that turn other genes on and off and are tied to cell membranes. These membrane-tethered gene switches are seen in animals but hadn't been studied in great detail in plants.

"The bZIP28 protein is anchored in the endoplasmic reticulum, away from its place of action," Benning explained. "But when the plant is stressed by heat, one end of bZIP28 is cut off and moves into the nucleus of the cell where it can turn on other genes to control the heat response. Understanding how the whole mechanism works will be the subject of more research."

Plants with an inactive bZIP28 gene die as soon as temperatures reach a certain level.

Jamie DePolo | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>