Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MS research: Myelin influences how brain cells send signals

22.07.2011
The development of a new cell-culture system that mimics how specific nerve cell fibers in the brain become coated with protective myelin opens up new avenues of research about multiple sclerosis. Initial findings suggest that myelin regulates a key protein involved in sending long-distance signals.

Multiple sclerosis (MS) is an autoimmune disease characterized by damage to the myelin sheath surrounding nerve fibers. The cause remains unknown, and it is a chronic illness affecting the central nervous system that has no cure.

MS has long been considered a disease of white matter, a reference to the white-colored bundles of myelin-coated axons that project from the main body of a brain cell. But researchers have discovered that the condition also affects myelinated axons scattered in gray matter that contains main bodies of brain cells, and specifically the hippocampus region, which is important for learning and memory.

Up to half of MS patients suffer cognitive deficits in addition to physical symptoms. Researchers suspect that cognitive problems are caused by abnormal electrical activities of the demyelinated axons extending from hippocampal cells, but until now have not been able to test myelin’s role in this part of the brain.

Ohio State University researchers have created a system in which two types of cells interact in a dish as they do in nature: neurons from the hippocampus and other brain cells, called oligodendrocytes, whose role is to wrap myelin around the axons.

Now that the researchers can study how myelination is switched on and off for hippocampal neurons, they also can see how myelin does more than provide insulation – it also has a role in controlling nerve impulses traveling between distant parts of the nervous system. Identifying this mechanism when myelin is present will help improve understanding of what happens when axons in this critical area of the brain lose myelin as a result of MS, researchers say.

So far, the scientists have used the system to show that myelin regulates the placement and activity of a key protein, called a Kv1.2 voltage-gated potassium channel, that is needed to maintain ideal conditions for the effective transmission of electrical signals along these hippocampal axons.

“This channel is important because it is what leads to electrical activity and how neurons communicate with each other downstream,” said Chen Gu, assistant professor of neuroscience at Ohio State and lead author of the study. “If that process is disrupted by demyelination, disease symptoms may occur.”

The study appears in the current (July 22, 2011) issue of the Journal of Biological Chemistry.

To create the cell culture system, the researchers began with hippocampus neurons from a rodent brain – a cell type that Gu has worked with for years. In culture, these cells can grow and develop dendrites – other branch-like projections off of neurons – and axons as well as generate electrical activity and synaptic connections, the same events that occur in the brain.

The researchers then added oligodendrocytes, along with some of their precursor cells, to the same dish as the neurons. And eventually, after maturing, these oligodendrocytes began to wrap myelin around the axons of the hippocampal neurons.

This system takes about five weeks to create, but the trickiest part, Gu said, was developing the proper solution for this culture so that both kinds of cells would behave as nature intended.

“In the end, the composition of the culture medium is basically half from a solution that supports the neurons and half from a medium in which the oligodendrocytes function well. We know that all the cells were happy because we got myelin,” said Gu, also an investigator in Ohio State’s Center for Molecular Neurobiology.

With the system established, they then turned to experimentation to test the effects of the myelin’s presence on these specific brain cells.

Nerve cells send their signals encoded in electrical impulses over long distances. Concerted actions of various ion channels are required for properly generating these nerve impulses. Potassium channels are involved at the late phase in an impulse, and its role is to return a nerve cell to a resting state after the impulse has passed through it and gear up for the next one. The Kv1.2 ion channel helps ensure that this process works smoothly.

By experimentally manipulating signal conditions with the new co-culture system, Gu and his colleague were able to establish part of the sequence of events required for myelinated hippocampal neurons to effectively get their signals to their targets. Starting with a protein known to be produced by myelin and axons, called TAG-1, a cell adhesion molecule, they traced a series of chemical reactions indicating that myelin on the hippocampal axons was controlling the placement and activity of the Kv1.2 ion channel.

“The analysis allowed us to see the signaling pathways involving myelin’s regulation of the Kv1.2 channel’s placement along the axon as well as fine-tuning of the channel’s activity,” Gu said.

When MS demyelinates these axons, the affected nerve cells don’t get the message to rest, and subsequently can’t prepare adequately to receive and transmit the next signal that comes along.

“This means a nerve impulse will have a hard time traveling through the demyelinated region,” Gu said. “This shows that the ion channel is probably involved in the downstream disease progression of MS.”

Gu envisions many additional uses for the new co-culture system, including additional studies of how myelin affects the behavior of other channels, proteins and molecules that function within axons, as well as to screen the effects of experimental drugs on these myelinated cells.

This work was supported by a Career Transition Fellowship Award from the National Multiple Sclerosis Society and a grant from the National Institute for Neurological Disorders and Stroke.

Gu conducted this study with Yuanzheng Gu, a research associate in the Department of Neuroscience at Ohio State.

Contact: Chen Gu, (614) 292-0349; gu.49@osu.edu
Written by Emily Caldwell, (614) 292-8410; caldwell.151@osu.edu

Chen Gu | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht MACC1 Gene Is an Independent Prognostic Biomarker for Survival in Klatskin Tumor Patients
31.08.2015 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Fish Oil-Diet Benefits May be Mediated by Gut Microbes
28.08.2015 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Siemens sells 18 industrial gas turbines to Thailand

01.09.2015 | Press release

An engineered surface unsticks sticky water droplets

01.09.2015 | Materials Sciences

New material science research may advance tech tools

01.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>