Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRSA’s ‘weak point’ visualised by scientists

20.01.2009
An enzyme that lives in MRSA and helps the dangerous bacterium to grow and spread infection through the human body has been visualised for the first time, according to a study out today in Proceedings of the National Academy of Sciences (PNAS).

Now, armed with detailed information about the structure of this enzyme, researchers hope to design new drugs that will seek it out and disable it, providing a new way of combating MRSA and other bacterial infections.

The enzyme, a ‘worker-protein’ called LtaS, produces an important component of the protective outer-layer that surrounds all Staphylococcus aureus cells as well as many other bacteria that cause disease.

Staphylococcus aureus is a type of bacterium that causes a variety of infections in the human body, including skin infections and abscesses, sometimes leading to blood poisoning and life-threatening lung or brain infections. MRSA is a particular strain of Staphylococcus aureus, which has evolved to be resistant to the antibiotic methicillin and a large number of other antibiotics, and can be life threatening.

To counter this drug resistance and ensure that it is possible to treat MRSA infection in the future, new antibiotics are needed that work differently, for example by attacking parts of the pathogen that are not targeted by current drugs.

The team from Imperial College London behind today’s study, funded by the Medical Research Council, thinks that LtaS might be a good candidate target for a new antibiotic to which MRSA will not be resistant. This is because its job is to build a polymer called lipoteichoic acid (LTA), which is an important structure found on the surface of Staphylococcus aureus cells.

Although the role of the cell surface polymer LTA is not fully understood, lab tests carried out by the same researchers have shown that if the LtaS enzyme is depleted, production of LTA on the cell surface draws to a halt. As a result growth of the Staphylococcus aureus cell is blocked. So in a patient infected with MRSA, inhibiting this enzyme could clear up the infection because the bacterial cells would be unable to grow properly. Many existing antibiotics work in a similar way by inhibiting the production of other such important structures on the surface of bacterial cells.

The trick, according to one of the paper’s lead authors, Dr Angelika Grundling from Imperial College London’s Division of Investigative Science, is to now find a way of using the new knowledge to develop a drug for use in real world scenarios:

“We’re not quite sure how it works, but we know that this surface structure called LTA is involved in cell growth and cell division – we have shown that without it the cell cannot grow properly, and eventually dies. Because LtaS is the ‘machine’, which builds LTA, developing a drug that knocks out the machine will provide us with a new way to disable the growth of these cells, which would represent a novel new treatment for MRSA and other Staphylococcus aureus infections.”

Dr Grundling and her colleagues have produced a detailed image of the molecular structure of the LtaS enzyme using X-ray crystallography techniques. The image includes a map of LtaS’s active binding site: the part of the enzyme which plays a key role in building LTA. This is the very part that researchers now need to home in on with a drug, in order to prevent the LtaS enzyme from doing its job.

Professor Paul Freemont from Imperial’s Division of Molecular Biosciences, co-lead-author of the paper, explains the importance of the information they have gained about this particular part of the enzyme:

“If we’re to develop a drug which disables LtaS from doing its job, then we need to make sure the drug molecule is as perfectly matched as possible to the enzyme’s binding site, so it can trick the enzyme into taking it up. Once the drug is bound to the enzyme it will be able start its job of sabotage.

“So the more detailed information about the binding site we have, the better we’ll be able to develop an effective drug to match it,” he said.

The two Imperial teams led by Professor Freemont and Dr Grundling now hope to work with the College’s Drug Discovery Centre to search for a biological agent that interacts with the LtaS binding site, as the basis for a new antibiotic drug.

They hope that in the future such a drug could be used to treat not just MRSA, but a whole host of infections caused by bacterial pathogens.

Additional funding for the research was obtained through the US National Institute of Health.

Danielle Reeves | alfa
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>