Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRI Zooms in on Microscopic Flow

08.10.2010
“Better and faster results!” is the clarion call for scientists and engineers to continually strive to improve their research tools.

Of the tools used to study material structures at the atomic and molecular scales, there is none finer than Nuclear Magnetic Resonance (NMR) spectroscopy and its daughter technology Magnetic Resonance Imaging (MRI).

Now, the latest development from the research group of one of the word’s foremost authorities on NMR/MRI technology promises NMR/MRI results that are better and faster than ever before – a million times faster!

Through a combination of remote instrumentation, JPEG-style image compression algorithms and other key enhancements, chemist Alexander Pines and members of his research group have been able to use NMR/MRI to image materials flowing through microfluidic “lab-on-a-chip” devices and zoom in on microscopic objects of particular interest with unprecedented spatial and time resolutions. Pines holds joint appointments with the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) at Berkeley.

“What excites me most about this new methodology is the possibility of a mobile, chip-based NMR/MRI platform for microfluidic analysis. Who knows? This might turn out to be useful for chemistry and biomedicine,” says Pines, an internationally recognized leader in the development of NMR technology, who is a faculty senior scientist in Berkeley Lab’s Materials Sciences Division and the Glenn T. Seaborg Professor of Chemistry at UC Berkeley

This latest work, which focused on MRI, has been reported in the journal Science in a paper titled “Zooming in on Microscopic Flow by Remotely Detected MRI.” Co-authoring the paper with Pines were Vikram Bajaj, who is still a member of the Pines’ group, plus Jeffrey Paulsen, now of Schlumberger-Doll Research, and Elad Harel, now at the University of Chicago.

Says Bajaj, first author on the Science paper, “We have been able to conclusively demonstrate the ability to record microscopic images of flowing macroscopic objects without loss of sensitivity, something that is impossible in conventional MRI. We were also able to illustrate how MRI can be used to measure flow dynamics quantitatively and with high spatial resolution in real microfluidic devices. The spatial resolution we achieved is sufficient to capture the results of hundreds or thousands of parallel assays on a microfluidic device. Furthermore, we recorded these images approximately one million times faster than could be done with a conventional MRI experiment. This means that experiments which would have taken years to complete are now practical considerations.”

NMR/MRI signals are made possible by a property found in the atomic nuclei of almost all molecules called “spin,” which makes the nuclei act as if they were bar magnets. Obtaining an NMR/MRI signal depends upon an excess of nuclei in a sample with spins pointing either “north” or “south.” In the signal-encoding phase of NMR/MRI, the nuclei are exposed to a magnetic field and subjected to radiofrequency pulses so that they absorb and re-emit energy at signature frequencies. In the signal-detection phase of NMR/MRI, the frequencies of the encoded signals are either directly measured to obtain a spectrum (NMR), or used to obtain a second, spatially encoded signal that can then be translated into images (MRI).

MRI has become a staple of modern medicine, providing physicians with a diagnostic tool that is noninvasive, quick, and involves no ionizing radiation that can damage cells and tissue. However, conventional MRI requires huge doughnut-shaped machines that fill an entire room and are extremely expensive to purchase and operate. In recent years, Pines and his group have taken great strides towards making NMR/MRI technology compact, portable and relatively inexpensive. It started with the decoupling of the NMR/MRI signal encoding and signal detection processes, which made remote NMR/MRI possible and opened the technology to lab-on-a-chip microfluidic assays of gases and liquids. With these new developments, Pines and his group have laid the foundation for new NMR/MRI applications in portable chemical and biomedical analysis.

“Our goal is to develop NMR/MRI appliances for portable chemical analysis of complex mixtures, including blood, urine, and saliva,” Bajaj says. “Ultimately, we would like to make it possible to use NMR/MRI in point of care clinical analysis.”

In their new Science paper, Pines and Bajaj and their co-authors describe how they were able to apply MRI technology to studies involving microscopic flow through microfluidic or biological channels, or through porous materials. The key was the integration of several new elements into their remote NMR/MRI configuration. This included the fabrication of microsolenoid MRI probes with demountable microfluidic device holders, the design of remote MRI sequences for spatial encoding in the presence of motion, as well as for velocimetric measurements, and the use of JPEG-style compressive sampling algorithms for accelerated image encoding.

“The combination of remote NMR/MRI methods with these new elements spectroscopically mimics the implantation of a coil around a microscopic feature of interest and allows us to zoom in on the microscopic details of microfluidic flow dynamics in three spatial dimensions,” says Bajaj. “The mechanism of remote detection is analogous to that of a magnetic recording tape on which complex data are first encoded and later read out by a single stationary detector as the tape advances.”

This work is supported by the U.S. Department of Energy’s Office of Science, and by a gift from the Agilent Technologies Foundation.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research for DOE’s Office of Science and is managed by the University of California. Visit our Website at www.lbl.gov/

Additional Information

For more information about the research of Alexander Pines and his group, visit the Web at http://waugh.qb3.berkeley.edu/

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov
http://newscenter.lbl.gov/news-releases/2010/10/07/mri-microscopic-flow/

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>