Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRI scans reveal brain changes in people at genetic risk for Alzheimer’s

17.12.2010
APOE4 genotype linked to functional changes prior to formation of senile plaques

People with a known, high risk for Alzheimer’s disease develop abnormal brain function even before the appearance of telltale amyloid plaques that are characteristic of the disease, according to a new study.

Researchers at Washington University School of Medicine in St. Louis report in the Dec. 15 issue of The Journal of Neuroscience that these patients had a particular form of the apolipoprotein E (APOE) gene called APOE4. The findings suggest that the gene variant affects brain function long before the brain begins accumulating the amyloid that will eventually lead to dementia.

“We looked at a group of structures in the brain that make up what’s called the default mode network,” says lead author Yvette I. Sheline, MD. “In particular, we are interested in a part of the brain called the precuneus, which may be important in Alzheimer’s disease and in pre-Alzheimer’s because it is one of the first regions to develop amyloid deposits. Another factor is that when you look at all of the structural and functional connections in the brain, the most connected structure is the precuneus. It links many other key brain structures together.”

The research team conducted functional MRI scans on 100 people whose average age was 62. Just under half of them carried the APOE4 variant, which is a genetic risk factor for late-onset Alzheimer’s disease. Earlier PET scans of the study subjects had demonstrated that they did not have amyloid deposits in the brain. Amyloid is the protein that makes up the senile plaques that dot the brains of Alzheimer’s patients and interfere with cognitive function.

Participants in the study also underwent spinal puncture tests that revealed they had normal amyloid levels in their cerebrospinal fluid.

“Their brains were ‘clean as a whistle,’ ” says Sheline, a professor of psychiatry, of radiology and of neurology and director of Washington University’s Center for Depression, Stress and Neuroimaging. “As far as their brain amyloid burden and their cerebrospinal fluid levels, these individuals were completely normal. But the people who had the APOE4 variant had significant differences in the way various brain regions connected with one another.”

Sheline’s team focused on the brain’s default mode network. Typically, the default network is active when the mind rests. Its activity slows down when an individual concentrates.

Subjects don’t need to perform any particular tasks for researchers to study the default mode network. They simply relax in the MRI scanner and reflect or daydream while the machine measures oxygen levels and blood flow in the brain.

“We make sure they don’t go to sleep,” Sheline says. “But other than not sleeping, study participants had no instructions. They were just lying there at rest, and we looked at what their brains were doing.”

This is the latest in a series of studies in which Sheline and her colleagues have looked at brain function in people at risk for Alzheimer’s disease. Initially, her team compared the default mode networks in the brains of people with mild Alzheimer’s disease to the same structures in the brains of those who were cognitively normal. In that study, her team found significant differences in how the network functioned.

Then, using PET imaging to identify cognitively normal people who had amyloid deposits in their brains in a second study, they compared those cognitively normal people whose PET scans indicated that their brains contained amyloid to others whose PET scans showed no evidence of amyloid. Again, the default mode network operated differently in those with amyloid deposits.

In the current study, there was no evidence of dementia or amyloid deposits. But still, in those with the APOE4 variant, there was irregular functioning in the default mode network.

APOE4 is the major genetic risk factor for sporadic cases of Alzheimer’s disease. Other genes that pass on inherited, early-onset forms of the disease have been identified, but APOE4 is the most important genetic marker of the disease identified so far, Sheline says.

The study subjects, all of whom participate in studies through the university’s Charles F. and Joanne Knight Alzheimer’s Disease Research Center, will be followed to see whether they eventually develop amyloid deposits. Sheline anticipates many will.

“I think a significant number of them eventually will be positive for amyloid,” she says. “We hope that if some people begin to accumulate amyloid, we’ll be able to look back at our data and identify particular patterns of brain function that might eventually be used to predict who is developing Alzheimer’s disease.”

The goal is to identify those with the highest risk of Alzheimer’s and to develop treatments that interfere with the progression of the disease, keeping it from advancing to the stage when amyloid begins to build up in the brain and, eventually, dementia sets in.

“The current belief is that from the time excess amyloid begins to collect in the brain, it takes about 10 years for a person to develop dementia,” Sheline says. “But this new study would suggest we might be able to intervene even before amyloid plaques begin to form. That could give us an even longer time window to intervene once an effective treatment can be developed.”

Sheline YI, Morris JC, Snyder AZ, Price JL, Yan Z, D’Angelo G, Liu C, Dixit S, Benzinger T, Fagan A, Goate AM, Mintun MA. APOE4 allele disrupts resting state fMRI connectivity in the absence of amyloid plaques or decreased CSF Aß42. The Journal of Neuroscience, vol. 30(50). pp. 17035-17040. Dec. 15, 2010.

This work was supported by grants from the National Institute of Mental Health and the National Institute on Aging of the National Institutes of Health.

Several of the authors have served on advisory boards, speakers’ bureaus or as consultants for Lilly, AstraZeneca, Bristol-Myers Squibb, Elan, Genentech, Merck, Novartis, Schering Plough and Wyeth. For a complete listing, please consult the manuscript. None of the authors of the study have any financial interest in the results of the study nor any other conflict of interest relevant to the subject of the study.

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked fourth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Jim Dryden | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>