Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why the MRC didn't fund research that led to the birth of the world's first test tube baby

26.07.2010
Thirty-two years ago today, the world's first baby was born after in vitro fertilisation. However, the work that led to the birth of Louise Brown on 25 July 1978 had to be privately funded after the UK's Medical Research Council decided in 1971 against providing the Cambridge physiologist Robert Edwards and the Oldham gynaecologist Patrick Steptoe with long-term financial support.

Today, an intriguing paper published in Europe's leading reproductive medicine journal Human Reproduction [1] reveals for the first time the reasoning behind the MRC's much-criticised decision.

The authors of the research, led by Martin Johnson, Professor of Reproductive Sciences at the University of Cambridge, and funded by the Wellcome Trust, write: "The failure of Edwards' and Steptoe's application for long-term support was not simply due to widespread establishment hostility to IVF. It failed, we argue for more complex reasons".

These reasons included:

A strategic error by Edwards and Steptoe when they declined an invitation from the MRC to join a new, directly funded Clinical Research Centre at Northwick Park Hospital, Harrow. They preferred to ask for long-term grant support at the University of Cambridge, but this meant they had to compete for funding with all the other research projects bidding for MRC support. This was also difficult for Cambridge, which lacked the back-up of an academic Department of Obstetrics and Gynaecology at that time.

Most of the MRC referees who were consulted on the proposal considered, in line with government policy, that it was more important to limit fertility and the growth of Britain's population than to treat infertility. Treating infertility was seen as experimental research rather than as therapeutic.

Concerns about embryo quality (would babies be born with severe abnormalities?) and patient safety made the referees doubt the wisdom of funding embryo transfer without conducting studies in primates first.

Edwards' and Steptoe's high profile in the media antagonised the referees who strongly disapproved of this method of public discussion of the science and ethics of treating infertility.

An additional obstacle for Edwards and Steptoe was that they were seen by the MRC as not being part of the "medical establishment". In their paper, Prof Johnson and his colleagues write: "Steptoe came from a minor northern hospital, while Edwards, though from Cambridge, was neither medically qualified nor yet a professor." Edwards had a PhD in developmental genetics from the Institute of Animal Genetics at the University of Edinburgh, then the leading UK centre in the field.

Prof Johnson said: "The MRC's negative decision on funding of IVF, and their public defence of this decision, had major consequences for Edwards and Steptoe and set MRC policy on IVF research funding for the next eight years. This decision was only reversed after the birth of two healthy babies from seven IVF pregnancies. In its 1978/79 Annual Report, the MRC announced a change of policy and from that time on became a strong and major supporter of research on human IVF and human embryos, although curiously not research follow-up of IVF pregnancies."

Since then, an estimated 4.3 million babies have been born worldwide with the help of a range of fertility treatments developed since the birth of Louise Brown [2].

Prof Johnson and his colleagues, Sarah Franklin, Matthew Cottingham and Nick Hopwood, spent three years studying the MRC records at the National Archives at Kew in Surrey, and also documents from the Royal College of Obstetricians and Gynaecologists, Addenbrooke's Hospital, Cambridgeshire County Council and Cambridge University Library. Bob Edwards' wife, Ruth, gave them access to his private papers, and the researchers also interviewed many of the key players involved in the MRC's decision in 1971 not to fund the research.

In an accompanying editorial [3], Professor John Biggers from Harvard Medical School (USA), writes: "By taking us back 40 years, the authors have demonstrated the importance of understanding a decision in light of the culture and circumstances at the time the decision was made. Although the grant was rejected, Edwards' and Steptoe's visions and persistence have benefited an enormous number of infertile people, both male and female."

Prof Johnson said: "The story of the MRC's non-funding of IVF belies the cliché that science 'races ahead' of society. Similarly, the standard view, that ethical consideration of bioscience and biomedicine can only ever be reactive, is contradicted by the evidence of extensive ethical debate surrounding the prehistory of clinical IVF – most of it actively stimulated by Edwards himself. Although attitudes to medical scientists in the media have changed significantly since the 1970s, scientists and clinicians engaged in high-profile work still face a dilemma. If they encourage public discussion of their work – which they may see as both necessary to securing support and desirable to ensure full ethical debate – must they inevitably weaken their standing among their peers?

"Finally, our case study questions the myth of two courageous mavericks pitted against a conservative establishment. This myth does capture important elements of truth: Edwards and Steptoe were outsiders and did pioneer—against prevailing wisdom—new ideas, therapies, values, public discourses and ethical thinking. But the process of decision-making was more complex than the myth allows. Our research provides a fuller understanding of what happened at the birth of the IVF revolution."

Prof Johnson believes that today the decision-making processes involved in awarding funding for projects are more open and transparent, with discussion in the wider community and in the media actively welcomed, as was the case with the two Human Fertilisation and Embryology Acts in 1990 and 2008.

"A continuing problem, however, is more to do with the fact that there are some very fashionable topics that can create a buzz and attract huge research interest and funding, sometimes in disproportionate amounts; then it was fertility limitation, more recently genome sequencing would be an example. This can leave other Cinderella topics languishing in the ashes, with little financial support, even though they might well play an equally, if not more, important role in patient welfare."

[1] Why the Medical Research Council refused Robert Edwards and Patrick Steptoe support for research on human conception in 1971. doi:10.1093/humrep/deq155
[2] From new data presented at the 2010 annual conference of the European Society of Human Reproduction and Embryology in Rome.

[3] Editorial. doi:10.1093/humrep/deq156

Emma Mason | EurekAlert!
Further information:
http://www.eshre.eu

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>