Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MPI and MDC Researchers Make Significant Strides in Identifying Cause of Bacterial Infections

23.04.2009
Several bacterial pathogens use toxins to manipulate human host cells, ultimately disturbing cellular signal transduction. Until now, however, scientists have been able to track down only a few of the proteins that interact with bacterial toxins in infected human cells.

Now, researchers of the Max Planck Institute of Biochemistry in Martinsried and the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch in Germany have identified 39 interaction partners of these toxins, using novel technology which allowed them to screen for large numbers of proteins simultaneously (Cell Host & Microbe, Vol. 5, Issue 4, 397-403)*.

Many bacteria inject toxins into human cells using a secretion system that resembles a molecular syringe. Within the host cell, some of these toxins are activated in such a way that they can manipulate important cellular signaling pathways. In healthy cells, these signals serve to regulate metabolism or cell division, among other things. By manipulating the signals, bacteria can abuse the cell machinery of the human host in order to spread and survive.

Applying a method developed by Professor Matthias Mann of the MPI, the scientists succeeded for the first time in systematically investigating the cellular target sites of the bacterial toxins. "Surprisingly, the toxins are not optimally adapted to the structures of human proteins," Dr. Matthias Selbach of MDC explained. While binding relatively weakly to individual human proteins, they are able to influence several different proteins simultaneously. "A single bacterial toxin seems to function like a master key that can access different host cell proteins in parallel", Dr. Selbach said. "Perhaps it is due to this strategy that bacteria are able to attack very different cells and, thus, to increase their survival chances in the host."

Dr. Selbach hopes that these basic research findings will help to improve the treatment of bacterial infections in the future. Instead of nonspecific antibiotic therapy, new drugs could target the signaling mechanisms which are disrupted by the bacterial toxins.

*Host cell interactome of tyrosine-phosphorylated bacterial proteins

Matthias Selbach1,2, Florian Ernst Paul2, Sabine Brandt3, Patrick Guye4, Oliver Daumke2, Steffen Backert5, Christoph Dehio4, Matthias Mann1

1Max Planck Institute of Biochemistry, Dept. of Proteomics and Signal Transduction, Am Klopferspitz 18, D-82152 Martinsried, Germany
2Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, D-13092 Berlin, Germany
3Otto-von-Guericke University Magdeburg, Institute for Medical Microbiology, Leipziger Str. 44, D-39120 Magdeburg, Germany
4Biozentrum of the University of Basel, Focal Area Infection Biology, Klingelbergstrasse 70, CH-4056 Basel, Switzerland

5University College Dublin, School of Biomolecular and Biomedical Science, Ardmore House, Dublin-4, Ireland

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Further information:
http://www.mdc-berlin.de/
http://www.biochem.mpg.de/mann/index.html

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>