Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moving Targets

21.09.2012
Caltech Biologists Gain New Insight into Migrating Cells

At any given moment, millions of cells are on the move in the human body, typically on their way to aid in immune response, make repairs, or provide some other benefit to the structures around them. When the migration process goes wrong, however, the results can include tumor formation and metastatic cancer.


Migrating cells in a nematode are identified and stained green in the top image. Looking closer, the glowing cell is extracted for analysis using a glass pipette.

[Credit: Caltech / Mihoko Kato]

Little has been known about how cell migration actually works, but now, with the help of some tiny worms, researchers at the California Institute of Technology (Caltech) have gained new insight into this highly complex task.

The team's findings are outlined this week online in the early edition of the Proceedings of the National Academy of Sciences (PNAS).

"In terms of cancer, we know how to find primary tumors and we know when they're metastatic, but we're missing information on the period in between when cells are crawling around, hanging out, and doing who knows what that leads to both of these types of diseases," says Paul Sternberg, Thomas Hunt Morgan Professor of Biology at Caltech, and corresponding author of the paper.

To learn more about those crawling, or migrating, cells, Sternberg looked at the animal he knows best—the tiny Caenorhabditis elegans, a common species of roundworm that he has been studying for many years. Despite their small size, the worms actually share quite a few genes with humans.

"Migration is such a conserved process," says Mihoko Kato, a senior research fellow in biology at Caltech and a coauthor of the paper. "So whether it happens in C. elegans or in mammals, like humans, we think that many of the same genes are going to be involved."

Contained in each cell—be it human or worm—are thousands of genes, all of which have a special job, or jobs, to do. Of these genes, roughly one-third are active in a given cell. To see what genes are expressed during migration, Sternberg and Kato, along with Erich Schwarz, a research fellow in Sternberg's lab, studied a single cell, called the linker cell (LC), in the worms; during reproductive development, LCs travel almost the entire length of the worm's body.

Using high-powered microscopy, the team identified LCs at two intervals, 12 hours apart, during the worm's larval stage, and removed them from the animals. Then, using sequencing and computational analysis, they determined the genes that were actively expressed at these two migration time points. This method of study is called transcriptional profiling.

"By understanding the normal migration of a single cell, we can understand something about how the cells are programmed to navigate their environment," says Sternberg, who is also an investigator with the Howard Hughes Medical Institute. "Our view of cancer metastasis is that the tumor cells confront some obstacle and then they have to evolve to get through or around that obstacle. The way they probably do that is by using some aspect of the normal program that exists somewhere in the genome."

He says that learning more about different ways that cells migrate may lead to the development of new types of drugs that block this process by targeting specific genes. The team plans additional transcriptional profiling studies to obtain more detailed information about the functions of particular C. elegans genes involved in migration—and, eventually, of similar genes in higher organisms, including humans.

"We selected genes present in both worms and humans, but which have not been studied much before us," says Schwarz. "Since we found that some of these genes help worm LCs migrate, we think each one may have a related human gene helping cells migrate, too."

"The nice thing about this technology is that you can use it with any cell type," adds Kato, who points out that their studies have already helped identify new functions for known genes possessed by both the worms and humans. "It's a similar process to do transcriptome profiling using human cells."

In addition to identifying drug targets, the team is also hoping to find a good signature, or molecular marker, for migrating cells. "This kind of information could be very useful diagnostically, to help identify cells that are doing things that they shouldn't be doing, or weird combinations of genes that shouldn't be expressed together, which is what a tumor cell might have," says Sternberg. "This work lays the foundation for really understanding what information is critically needed from mammalian cells for tumor cells to be able to migrate."

The study, "Functional transcriptomics of a migrating cell in Caenorhabditis elegans," was funded by the National Institutes of Health and the Howard Hughes Medical Institute.

Written by Katie Neith
Brian Bell
bbell2@caltech.edu

Brian Bell | EurekAlert!
Further information:
http://www.caltech.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>