Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moving Single Cells Around -- Accurately and Cheaply

21.08.2014

Scientists at the Houston Methodist Research Institute have figured out how to pick up and transfer single cells using a pipette -- a common laboratory tool that's been tweaked slightly. They describe this engineering feat and preliminary test results in a recent issue of the Journal of the American Chemical Society.

"Studying single cells and their unique functions has become a frontier in current biomedical research," said nanomedicine department. faculty member Lidong Qin, Ph.D., the project's principal investigator.


Lidong Qin laboratory

Dispensing single cells into commercial 96-well plates by hand-held single-cell pipet (hSCP). The insert demonstrates the process of single-cell capture and release.

"One of the biggest challenges for single-cell research is picking out only one cell from a collection of millions of cells. Cells are not only small, but also flexible in mechanics and variable in size; which are then extremely difficult for researchers and clinicians to capture single ones."

Zhiqiang Wang, Ph.D., professor of chemistry at Tsinghua University in Beijing, also contributed to the project.

Typical pipettes are fancy syringes used in laboratories to withdraw and deposit liquids, such as pure water or to transfer suspensions of bacterial cells into growth broth.

Some pipettes can translate coarse movements of the user's thumb into fine, exact, push-pull actions; other pipettes can be hard-programmed to manipulate exact volumes of liquid down to mere nanoliters, or billionths of a liter.

Few technologies exist that allow researchers to withdraw single animal or bacterial cells from a tube or Petri dish, and those that do exist are cumbersome, expensive, and can be extremely time consuming to use, Qin said. That's why he and his group developed the handheld single-cell pipette, or hSCP.

"Some old and clumsy methods are used to capture single cells," he explained. "Some researchers use their mouths at one end of the pipette, driven by their own mouth force, to try to ensure only a minimum amount of cell suspension collected. The sample is then checked with a microscope to find out the number of cells captured. The opportunity to get only one cell is hit or miss and a bit troublesome.

"One company provides a million-dollar machine that can help biologists transfer single cells to 96-well plates. Each run costs an additional $1,000 to purchase the plate. Such technology will not be widely accessible to biologists."

The prototype of Qin's hSCP has two plungers (see figure). The first plunger withdraws fluid from a suspension of cells. Fluid travels through canals on either side of a nanoscopic, laser-sculpted "hook" that is just big enough to trap one cell. This hook can be altered depending on the size and type of cells a researcher is interested in. The first plunger is also used to wash and separate the captured cell from other cells that may have been extracted. The second plunger pushes the captured cell out of the pipette, possibly into growth medium, or onto a slide or welled plate for study.

Qin said one of his goals is to make the technology cost $10 or less per run. Future designs of the hSCP will be developed with mass production in mind. Qin said his group can also produce hSCPs that pick up virtually any small number of cells depending on a scientist's needs by etching more hooks during the pipette's construction.

###

Also contributing to the JACS paper were lead author Kai Zhang, Ph.D., whom Qin credits with helping to translate the initial design into a working device, Xin Han, Ph.D., Ying Li, Ph.D., Sharon Yalan Li, and Youli Zu, M.D., Ph.D. (Houston Methodist) and Zhiqiang Wang, Ph.D. (Tsinghua University in Beijing), whom Qin credits with helping the Houston Methodist group appreciate the significant diversity of single cells of the same type and the commercial value of single-cell pipette technology. Work was funded by the National Institutes of Health, the Cancer Prevention Research Institute of Texas, and the Golfers Against Cancer Foundation.

To speak with Qin, please contact David Bricker, Houston Methodist, at 832-667-5811 or dmbricker@houstonmethodist.org.

"Handheld and integrated single-cell pipettes," Journal of the American Chemical Society, 2014, 136 (31), pp 10858–10861

David Bricker | newswise

Further reports about: Cancer Cells Tsinghua bacterial construction single cells

More articles from Life Sciences:

nachricht Newly-discovered signal in the cell sets protein pathways to mitochondria
27.06.2016 | Eberhard Karls Universität Tübingen

nachricht Neonicotinoid pesticides cause harm to honeybees
27.06.2016 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

Im Focus: Is There Life On Mars?

Survivalist back from Space - 18 months on the outer skin of the ISS

A year and a half on the outer wall of the International Space Station ISS in altitude of 400 kilometers is a real challenge. Whether a primordial bacterium...

Im Focus: CWRU physicists deploy magnetic vortex to control electron spin

Potential technology for quantum computing, keener sensors

Researchers at Case Western Reserve University have developed a way to swiftly and precisely control electron spins at room temperature.

Im Focus: Physicists measured something new in the radioactive decay of neutrons

The experiment inspired theorists; future ones could reveal new physics

A physics experiment performed at the National Institute of Standards and Technology (NIST) has enhanced scientists' understanding of how free neutrons decay...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

 
Latest News

3-D printing produces cartilage from strands of bioink

27.06.2016 | Materials Sciences

A shampoo bottle that empties completely -- every last drop

27.06.2016 | Innovative Products

Seeds of black holes could be revealed by gravitational waves detected in space

27.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>