Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moving Single Cells Around -- Accurately and Cheaply

21.08.2014

Scientists at the Houston Methodist Research Institute have figured out how to pick up and transfer single cells using a pipette -- a common laboratory tool that's been tweaked slightly. They describe this engineering feat and preliminary test results in a recent issue of the Journal of the American Chemical Society.

"Studying single cells and their unique functions has become a frontier in current biomedical research," said nanomedicine department. faculty member Lidong Qin, Ph.D., the project's principal investigator.


Lidong Qin laboratory

Dispensing single cells into commercial 96-well plates by hand-held single-cell pipet (hSCP). The insert demonstrates the process of single-cell capture and release.

"One of the biggest challenges for single-cell research is picking out only one cell from a collection of millions of cells. Cells are not only small, but also flexible in mechanics and variable in size; which are then extremely difficult for researchers and clinicians to capture single ones."

Zhiqiang Wang, Ph.D., professor of chemistry at Tsinghua University in Beijing, also contributed to the project.

Typical pipettes are fancy syringes used in laboratories to withdraw and deposit liquids, such as pure water or to transfer suspensions of bacterial cells into growth broth.

Some pipettes can translate coarse movements of the user's thumb into fine, exact, push-pull actions; other pipettes can be hard-programmed to manipulate exact volumes of liquid down to mere nanoliters, or billionths of a liter.

Few technologies exist that allow researchers to withdraw single animal or bacterial cells from a tube or Petri dish, and those that do exist are cumbersome, expensive, and can be extremely time consuming to use, Qin said. That's why he and his group developed the handheld single-cell pipette, or hSCP.

"Some old and clumsy methods are used to capture single cells," he explained. "Some researchers use their mouths at one end of the pipette, driven by their own mouth force, to try to ensure only a minimum amount of cell suspension collected. The sample is then checked with a microscope to find out the number of cells captured. The opportunity to get only one cell is hit or miss and a bit troublesome.

"One company provides a million-dollar machine that can help biologists transfer single cells to 96-well plates. Each run costs an additional $1,000 to purchase the plate. Such technology will not be widely accessible to biologists."

The prototype of Qin's hSCP has two plungers (see figure). The first plunger withdraws fluid from a suspension of cells. Fluid travels through canals on either side of a nanoscopic, laser-sculpted "hook" that is just big enough to trap one cell. This hook can be altered depending on the size and type of cells a researcher is interested in. The first plunger is also used to wash and separate the captured cell from other cells that may have been extracted. The second plunger pushes the captured cell out of the pipette, possibly into growth medium, or onto a slide or welled plate for study.

Qin said one of his goals is to make the technology cost $10 or less per run. Future designs of the hSCP will be developed with mass production in mind. Qin said his group can also produce hSCPs that pick up virtually any small number of cells depending on a scientist's needs by etching more hooks during the pipette's construction.

###

Also contributing to the JACS paper were lead author Kai Zhang, Ph.D., whom Qin credits with helping to translate the initial design into a working device, Xin Han, Ph.D., Ying Li, Ph.D., Sharon Yalan Li, and Youli Zu, M.D., Ph.D. (Houston Methodist) and Zhiqiang Wang, Ph.D. (Tsinghua University in Beijing), whom Qin credits with helping the Houston Methodist group appreciate the significant diversity of single cells of the same type and the commercial value of single-cell pipette technology. Work was funded by the National Institutes of Health, the Cancer Prevention Research Institute of Texas, and the Golfers Against Cancer Foundation.

To speak with Qin, please contact David Bricker, Houston Methodist, at 832-667-5811 or dmbricker@houstonmethodist.org.

"Handheld and integrated single-cell pipettes," Journal of the American Chemical Society, 2014, 136 (31), pp 10858–10861

David Bricker | newswise

Further reports about: Cancer Cells Tsinghua bacterial construction single cells

More articles from Life Sciences:

nachricht Fruit fly studies shed light on adaptability of nerve cells
17.04.2015 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Rare monkey photographed in Congo's newest national park, Ntokou-Pikounda
17.04.2015 | Wildlife Conservation Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Astronomers reveal supermassive black hole's intense magnetic field

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a...

Im Focus: A “pin ball machine” for atoms and photons

A team of physicists from MPQ, Caltech, and ICFO proposes the combination of nano-photonics with ultracold atoms for simulating quantum many-body systems and creating new states of matter.

Ultracold atoms in the so-called optical lattices, that are generated by crosswise superposition of laser beams, have been proven to be one of the most...

Im Focus: UV light robot to clean hospital rooms could help stop spread of 'superbugs'

Can a robot clean a hospital room just as well as a person?

According to new research out of the Texas A&M Health Science Center College of Medicine, that is indeed the case. Chetan Jinadatha, M.D., M.P.H., assistant...

Im Focus: Graphene pushes the speed limit of light-to-electricity conversion

Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales

The efficient conversion of light into electricity plays a crucial role in many technologies, ranging from cameras to solar cells.

Im Focus: Study shows novel pattern of electrical charge movement through DNA

Electrical charges not only move through wires, they also travel along lengths of DNA, the molecule of life. The property is known as charge transport.

In a new study appearing in the journal Nature Chemistry, authors, Limin Xiang, Julio Palma, Christopher Bruot and others at Arizona State University's...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

 
Latest News

Engineer Improves Rechargeable Batteries with MoS2 Nano 'Sandwich'

17.04.2015 | Power and Electrical Engineering

Comparing Climate Models to Real World Shows Differences in Precipitation Intensity

17.04.2015 | Earth Sciences

A blueprint for clearing the skies of space debris

17.04.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>