Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moving Single Cells Around -- Accurately and Cheaply

21.08.2014

Scientists at the Houston Methodist Research Institute have figured out how to pick up and transfer single cells using a pipette -- a common laboratory tool that's been tweaked slightly. They describe this engineering feat and preliminary test results in a recent issue of the Journal of the American Chemical Society.

"Studying single cells and their unique functions has become a frontier in current biomedical research," said nanomedicine department. faculty member Lidong Qin, Ph.D., the project's principal investigator.


Lidong Qin laboratory

Dispensing single cells into commercial 96-well plates by hand-held single-cell pipet (hSCP). The insert demonstrates the process of single-cell capture and release.

"One of the biggest challenges for single-cell research is picking out only one cell from a collection of millions of cells. Cells are not only small, but also flexible in mechanics and variable in size; which are then extremely difficult for researchers and clinicians to capture single ones."

Zhiqiang Wang, Ph.D., professor of chemistry at Tsinghua University in Beijing, also contributed to the project.

Typical pipettes are fancy syringes used in laboratories to withdraw and deposit liquids, such as pure water or to transfer suspensions of bacterial cells into growth broth.

Some pipettes can translate coarse movements of the user's thumb into fine, exact, push-pull actions; other pipettes can be hard-programmed to manipulate exact volumes of liquid down to mere nanoliters, or billionths of a liter.

Few technologies exist that allow researchers to withdraw single animal or bacterial cells from a tube or Petri dish, and those that do exist are cumbersome, expensive, and can be extremely time consuming to use, Qin said. That's why he and his group developed the handheld single-cell pipette, or hSCP.

"Some old and clumsy methods are used to capture single cells," he explained. "Some researchers use their mouths at one end of the pipette, driven by their own mouth force, to try to ensure only a minimum amount of cell suspension collected. The sample is then checked with a microscope to find out the number of cells captured. The opportunity to get only one cell is hit or miss and a bit troublesome.

"One company provides a million-dollar machine that can help biologists transfer single cells to 96-well plates. Each run costs an additional $1,000 to purchase the plate. Such technology will not be widely accessible to biologists."

The prototype of Qin's hSCP has two plungers (see figure). The first plunger withdraws fluid from a suspension of cells. Fluid travels through canals on either side of a nanoscopic, laser-sculpted "hook" that is just big enough to trap one cell. This hook can be altered depending on the size and type of cells a researcher is interested in. The first plunger is also used to wash and separate the captured cell from other cells that may have been extracted. The second plunger pushes the captured cell out of the pipette, possibly into growth medium, or onto a slide or welled plate for study.

Qin said one of his goals is to make the technology cost $10 or less per run. Future designs of the hSCP will be developed with mass production in mind. Qin said his group can also produce hSCPs that pick up virtually any small number of cells depending on a scientist's needs by etching more hooks during the pipette's construction.

###

Also contributing to the JACS paper were lead author Kai Zhang, Ph.D., whom Qin credits with helping to translate the initial design into a working device, Xin Han, Ph.D., Ying Li, Ph.D., Sharon Yalan Li, and Youli Zu, M.D., Ph.D. (Houston Methodist) and Zhiqiang Wang, Ph.D. (Tsinghua University in Beijing), whom Qin credits with helping the Houston Methodist group appreciate the significant diversity of single cells of the same type and the commercial value of single-cell pipette technology. Work was funded by the National Institutes of Health, the Cancer Prevention Research Institute of Texas, and the Golfers Against Cancer Foundation.

To speak with Qin, please contact David Bricker, Houston Methodist, at 832-667-5811 or dmbricker@houstonmethodist.org.

"Handheld and integrated single-cell pipettes," Journal of the American Chemical Society, 2014, 136 (31), pp 10858–10861

David Bricker | newswise

Further reports about: Cancer Cells Tsinghua bacterial construction single cells

More articles from Life Sciences:

nachricht About injured hearts that grow back - Heart regeneration mechanism in zebrafish revealed
10.02.2016 | Universität Ulm

nachricht Chemical cages: New technique advances synthetic biology
10.02.2016 | Arizona State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

About injured hearts that grow back - Heart regeneration mechanism in zebrafish revealed

10.02.2016 | Life Sciences

The most accurate optical single-ion clock worldwide

10.02.2016 | Earth Sciences

Absorbing acoustics with soundless spirals

10.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>