Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Moving Toward Regeneration

The skin, the blood, and the lining of the gut—adult stem cells replenish them daily. But stem cells really show off their healing powers in planarians, humble flatworms fabled for their ability to rebuild any missing body part. Just how adult stem cells build the right tissues at the right times and places has remained largely unanswered.

Now, in a study published in an upcoming issue of Development, researchers at the Stowers Institute for Medical Research describe a novel system that allowed them to track stem cells in the flatworm Schmidtea mediterranea. The team found that the worms’ stem cells, known as neoblasts, march out, multiply, and start rebuilding tissues lost to amputation.

“We were able to demonstrate that fully potent stem cells can mobilize when tissues undergo structural damage,” says Howard Hughes Medical Institute and Stowers Investigator Alejandro Sánchez Alvarado, Ph.D., who led the study. “And these processes are probably happening to both you and me as we speak, but are very difficult to visualize in organisms like us.”

Stem cells hold the potential to provide an unlimited source of specialized cells for regenerative therapy of a wide variety of diseases but delivering human stem cell therapies to the right location in the body remains a major challenge. The ability to follow individual neoblasts opens the door to uncovering the molecular cues that help planarian stem cells navigate to the site of injury and ultimately may allow scientists to provide therapeutic stem cells with guideposts to their correct destination.

“Human counterparts exist for most of the genes that we have found to regulate the activities of planarian stem cells,” says Sánchez Alvarado. “But human beings have these confounding levels of complexity. Planarians are much simpler making them ideal model systems to study regeneration.”

Scientists had first hypothesized in the late 1800s that planarian stem cells, which normally gather near the worms’ midlines, can travel toward wounds. The past century produced evidence both for and against the idea. Sánchez Alvarado, armed with modern tools, decided to revisit the question.

For the new study, first author Otto C. Guedelhoefer, IV, Ph.D., a former graduate student in Sánchez Alvarado’s lab, exposed S. mediterranea to radiation, which killed the worms’ neoblasts while leaving other types of cells unharmed. The irradiated worms would wither and die within weeks unless Guedelhoefer transplanted some stem cells from another worm. The graft’s stem cells sensed the presence of a wound—the transplant site—migrated out of the graft, reproduced and rescued their host. Unlike adult stem cells in humans and other mammals, planarian stem cells remain pluripotent in fully mature animals and remain so even as they migrate.

But when Guedelhoefer irradiated only a part of the worm’s body, the surviving stem cells could not sense the injury and did not mobilize to fix the damage, which showed that the stem cells normally stay in place. Only when a fair amount of irradiated tissue died did the stem cells migrate to the injured site and start to rebuild. Next, Guedelhoefer irradiated a worm’s body part and cut it with a blade. The surviving stem cells arrived at the scene within days.

To perform the experiments, Guedelhoefer adapted worm surgery and x-ray methods created sixty to ninety years ago. “Going back to the old literature was essential and saved me tons of time,” says Guedelhoefer, currently a postdoctoral fellow at the University of California, Santa Barbara. He was able to reproduce and quantify results obtained in 1949 by F. Dubois, a French scientist, who first developed the techniques for partially irradiating planarians with x-rays.

But Guedelhoefer went further. He pinpointed the locations of stem cells and studied how far they dispersed using RNA whole-mount in situ hybridization (WISH), specifically adapted to planarians in Sánchez Alvarado’s lab. Using WISH, he observed both original stem cells and their progeny by tagging specific pieces of mRNA . The technique allowed him to determine that pluripotent stem cells can travel and produce different types of progeny at the same time.

“In other systems, most migrating stem cell progeny are not pluripotent,” says Guedelhoefer. “For the most part, blood stem cells in humans stay in the bone marrow but their progeny leave and turn into a few other cell types.” But in planarians, it looks like those two things are completely separate. Stem cells can move and maintain the full potential to turn into other types of cells.”

Next, Sánchez Alvarado looks forward to implementing genetic screens and transplantation experiments to disrupt or enhance the cellular behaviors the team observed, to figure out the “rules of engagement” for stem cell migration, he says.

“Why can some animals regenerate whole body parts but you and I are not good at it?” says Sánchez Alvarado. “Can we write an extra rule or erase one? Is it possible, for instance, to get rid of cancer while gaining regenerative properties? These are questions we’d love to have answers to.”

The Stowers Institute for Medical Research, a National Institutes of Health Training Grant (5T32 HD0791), a National Institutes of Health Grant (GM057260), and Howard Hughes Medical Institute provided funding for this work.

About the Stowers Institute for Medical Research

The Stowers Institute for Medical Research is a non-profit, basic biomedical research organization dedicated to improving human health by studying the fundamental processes of life. Jim Stowers, founder of American Century Investments, and his wife, Virginia, opened the Institute in 2000. Since then, the Institute has spent over 900 million dollars in pursuit of its mission.

Currently, the Institute is home to nearly 550 researchers and support personnel; over 20 independent research programs; and more than a dozen technology-development and core facilities.

Kristin Kessler | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>