Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moving Toward Regeneration

03.09.2012
The skin, the blood, and the lining of the gut—adult stem cells replenish them daily. But stem cells really show off their healing powers in planarians, humble flatworms fabled for their ability to rebuild any missing body part. Just how adult stem cells build the right tissues at the right times and places has remained largely unanswered.

Now, in a study published in an upcoming issue of Development, researchers at the Stowers Institute for Medical Research describe a novel system that allowed them to track stem cells in the flatworm Schmidtea mediterranea. The team found that the worms’ stem cells, known as neoblasts, march out, multiply, and start rebuilding tissues lost to amputation.

“We were able to demonstrate that fully potent stem cells can mobilize when tissues undergo structural damage,” says Howard Hughes Medical Institute and Stowers Investigator Alejandro Sánchez Alvarado, Ph.D., who led the study. “And these processes are probably happening to both you and me as we speak, but are very difficult to visualize in organisms like us.”

Stem cells hold the potential to provide an unlimited source of specialized cells for regenerative therapy of a wide variety of diseases but delivering human stem cell therapies to the right location in the body remains a major challenge. The ability to follow individual neoblasts opens the door to uncovering the molecular cues that help planarian stem cells navigate to the site of injury and ultimately may allow scientists to provide therapeutic stem cells with guideposts to their correct destination.

“Human counterparts exist for most of the genes that we have found to regulate the activities of planarian stem cells,” says Sánchez Alvarado. “But human beings have these confounding levels of complexity. Planarians are much simpler making them ideal model systems to study regeneration.”

Scientists had first hypothesized in the late 1800s that planarian stem cells, which normally gather near the worms’ midlines, can travel toward wounds. The past century produced evidence both for and against the idea. Sánchez Alvarado, armed with modern tools, decided to revisit the question.

For the new study, first author Otto C. Guedelhoefer, IV, Ph.D., a former graduate student in Sánchez Alvarado’s lab, exposed S. mediterranea to radiation, which killed the worms’ neoblasts while leaving other types of cells unharmed. The irradiated worms would wither and die within weeks unless Guedelhoefer transplanted some stem cells from another worm. The graft’s stem cells sensed the presence of a wound—the transplant site—migrated out of the graft, reproduced and rescued their host. Unlike adult stem cells in humans and other mammals, planarian stem cells remain pluripotent in fully mature animals and remain so even as they migrate.

But when Guedelhoefer irradiated only a part of the worm’s body, the surviving stem cells could not sense the injury and did not mobilize to fix the damage, which showed that the stem cells normally stay in place. Only when a fair amount of irradiated tissue died did the stem cells migrate to the injured site and start to rebuild. Next, Guedelhoefer irradiated a worm’s body part and cut it with a blade. The surviving stem cells arrived at the scene within days.

To perform the experiments, Guedelhoefer adapted worm surgery and x-ray methods created sixty to ninety years ago. “Going back to the old literature was essential and saved me tons of time,” says Guedelhoefer, currently a postdoctoral fellow at the University of California, Santa Barbara. He was able to reproduce and quantify results obtained in 1949 by F. Dubois, a French scientist, who first developed the techniques for partially irradiating planarians with x-rays.

But Guedelhoefer went further. He pinpointed the locations of stem cells and studied how far they dispersed using RNA whole-mount in situ hybridization (WISH), specifically adapted to planarians in Sánchez Alvarado’s lab. Using WISH, he observed both original stem cells and their progeny by tagging specific pieces of mRNA . The technique allowed him to determine that pluripotent stem cells can travel and produce different types of progeny at the same time.

“In other systems, most migrating stem cell progeny are not pluripotent,” says Guedelhoefer. “For the most part, blood stem cells in humans stay in the bone marrow but their progeny leave and turn into a few other cell types.” But in planarians, it looks like those two things are completely separate. Stem cells can move and maintain the full potential to turn into other types of cells.”

Next, Sánchez Alvarado looks forward to implementing genetic screens and transplantation experiments to disrupt or enhance the cellular behaviors the team observed, to figure out the “rules of engagement” for stem cell migration, he says.

“Why can some animals regenerate whole body parts but you and I are not good at it?” says Sánchez Alvarado. “Can we write an extra rule or erase one? Is it possible, for instance, to get rid of cancer while gaining regenerative properties? These are questions we’d love to have answers to.”

The Stowers Institute for Medical Research, a National Institutes of Health Training Grant (5T32 HD0791), a National Institutes of Health Grant (GM057260), and Howard Hughes Medical Institute provided funding for this work.

About the Stowers Institute for Medical Research

The Stowers Institute for Medical Research is a non-profit, basic biomedical research organization dedicated to improving human health by studying the fundamental processes of life. Jim Stowers, founder of American Century Investments, and his wife, Virginia, opened the Institute in 2000. Since then, the Institute has spent over 900 million dollars in pursuit of its mission.

Currently, the Institute is home to nearly 550 researchers and support personnel; over 20 independent research programs; and more than a dozen technology-development and core facilities.

Kristin Kessler | Newswise Science News
Further information:
http://www.stowers.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>