Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moving microscopic vision into another new dimension

30.06.2011
Scientists who pioneered a revolutionary 3-D microscope technique are now describing an extension of that technology into a new dimension that promises sweeping applications in medicine, biological research, and development of new electronic devices. Their reports on so-called 4-D scanning ultrafast electron microscopy, and a related technique, appear in two papers in the Journal of the American Chemical Society.

Chemistry Nobel Laureate Ahmed H. Zewail and colleagues moved high-resolution images of vanishingly small nanoscale objects from three dimensions to four dimensions when they discovered a way to integrate time into traditional electron microscopy observations. Their laser-driven technology allowed researchers to visualize 3-D structures such as a ring-shaped carbon nanotube while it wiggled in response to heating, over a time scale of femtoseconds.

A femtosecond is one millionth of one billionth of a second. But the 3-D information obtained with that approach was limited because it showed objects as stationary, rather than while undergoing their natural movements.

The scientists describe how 4-D scanning ultrafast electron microscopy and scanning transmission ultrafast electron microscopy overcome that limitation, and allow deeper insights into the innermost structure of materials. The reports show how the technique can be used to investigate atomic-scale dynamics on metal surfaces, and watch the vibrations of a single silver nanowire and a gold nanoparticle. The new techniques "promise to have wide ranging applications in materials science and in single-particle biological imaging," they write.

... more about:
»3-D image »4-D »MOVING »electron microscopy

Zewail and colleagues acknowledge funding from the National Science Foundation, the Air Force Office of Scientific Research, the Gordon & Betty Moore Physical Biology Center at Caltech, and the Arab Fund for Economic and Social Development.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

Further reports about: 3-D image 4-D MOVING electron microscopy

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>